Skip to content

odak.wave

odak.wave

Provides necessary definitions for merging geometric optics with wave theory and classical approaches in the wave theory as well. See "Introduction to Fourier Optcs" from Joseph Goodman for the theoratical explanation.

adaptive_sampling_angular_spectrum(field, k, distance, dx, wavelength)

A definition to calculate adaptive sampling angular spectrum based beam propagation. For more Zhang, Wenhui, Hao Zhang, and Guofan Jin. "Adaptive-sampling angular spectrum method with full utilization of space-bandwidth product." Optics Letters 45.16 (2020): 4416-4419.

Parameters:

  • field
               Complex field (MxN).
    
  • k
               Wave number of a wave, see odak.wave.wavenumber for more.
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    

Returns:

  • result ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def adaptive_sampling_angular_spectrum(field, k, distance, dx, wavelength):
    """
    A definition to calculate adaptive sampling angular spectrum based beam propagation. For more Zhang, Wenhui, Hao Zhang, and Guofan Jin. "Adaptive-sampling angular spectrum method with full utilization of space-bandwidth product." Optics Letters 45.16 (2020): 4416-4419.

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    k                : odak.wave.wavenumber
                       Wave number of a wave, see odak.wave.wavenumber for more.
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.

    Returns
    -------
    result           : np.complex
                       Final complex field (MxN).
    """
    iflag = -1
    eps = 10**(-12)
    nv, nu = field.shape
    l = nu*dx
    x = np.linspace(-l/2, l/2, nu)
    y = np.linspace(-l/2, l/2, nv)
    X, Y = np.meshgrid(x, y)
    fx = np.linspace(-1./2./dx, 1./2./dx, nu)
    fy = np.linspace(-1./2./dx, 1./2./dx, nv)
    FX, FY = np.meshgrid(fx, fy)
    forig = 1./2./dx
    fc2 = 1./2*(nu/wavelength/np.abs(distance))**0.5
    ss = np.abs(fc2)/forig
    zc = nu*dx**2/wavelength
    K = nu/2/np.amax(np.abs(fx))
    m = 2
    nnu2 = m*nu
    nnv2 = m*nv
    fxn = np.linspace(-1./2./dx, 1./2./dx, nnu2)
    fyn = np.linspace(-1./2./dx, 1./2./dx, nnv2)
    if np.abs(distance) > zc*2:
        fxn = fxn*ss
        fyn = fyn*ss
    FXN, FYN = np.meshgrid(fxn, fyn)
    Hn = np.exp(1j*k*distance*(1-(FXN*wavelength)**2-(FYN*wavelength)**2)**0.5)
    FX = FXN/np.amax(FXN)*np.pi
    FY = FYN/np.amax(FYN)*np.pi
    t_2 = nufft2(field, FX*ss, FY*ss, size=[nnv2, nnu2], sign=iflag, eps=eps)
    FX = FX/np.amax(FX)*np.pi
    FY = FY/np.amax(FY)*np.pi
    result = nuifft2(Hn*t_2, FX*ss, FY*ss, size=[nv, nu], sign=-iflag, eps=eps)
    return result

add_phase(field, new_phase)

Definition for adding a phase to a given complex field.

Parameters:

  • field
           Complex field.
    
  • new_phase
           Complex phase.
    

Returns:

  • new_field ( complex64 ) –

    Complex field.

Source code in odak/wave/__init__.py
def add_phase(field, new_phase):
    """
    Definition for adding a phase to a given complex field.

    Parameters
    ----------
    field        : np.complex64
                   Complex field.
    new_phase    : np.complex64
                   Complex phase.

    Returns
    -------
    new_field    : np.complex64
                   Complex field.
    """
    phase = calculate_phase(field)
    amplitude = calculate_amplitude(field)
    new_field = amplitude*np.cos(phase+new_phase) + \
        1j*amplitude*np.sin(phase+new_phase)
    return new_field

add_random_phase(field)

Definition for adding a random phase to a given complex field.

Parameters:

  • field
           Complex field.
    

Returns:

  • new_field ( complex64 ) –

    Complex field.

Source code in odak/wave/__init__.py
def add_random_phase(field):
    """
    Definition for adding a random phase to a given complex field.

    Parameters
    ----------
    field        : np.complex64
                   Complex field.

    Returns
    -------
    new_field    : np.complex64
                   Complex field.
    """
    random_phase = np.pi*np.random.random(field.shape)
    new_field = add_phase(field, random_phase)
    return new_field

adjust_phase_only_slm_range(native_range, working_wavelength, native_wavelength)

Definition for calculating the phase range of the Spatial Light Modulator (SLM) for a given wavelength. Here you prove maximum angle as the lower bound is typically zero. If the lower bound isn't zero in angles, you can use this very same definition for calculating lower angular bound as well.

Parameters:

  • native_range
                 Native range of the phase only SLM in radians (i.e. two pi).
    
  • working_wavelength (float) –
                 Wavelength of the illumination source or some working wavelength.
    
  • native_wavelength
                 Wavelength which the SLM is designed for.
    

Returns:

  • new_range ( float ) –

    Calculated phase range in radians.

Source code in odak/wave/__init__.py
def adjust_phase_only_slm_range(native_range, working_wavelength, native_wavelength):
    """
    Definition for calculating the phase range of the Spatial Light Modulator (SLM) for a given wavelength. Here you prove maximum angle as the lower bound is typically zero. If the lower bound isn't zero in angles, you can use this very same definition for calculating lower angular bound as well.

    Parameters
    ----------
    native_range       : float
                         Native range of the phase only SLM in radians (i.e. two pi).
    working_wavelength : float
                         Wavelength of the illumination source or some working wavelength.
    native_wavelength  : float
                         Wavelength which the SLM is designed for.

    Returns
    -------
    new_range          : float
                         Calculated phase range in radians.
    """
    new_range = native_range/working_wavelength*native_wavelength
    return new_range

angular_spectrum(field, k, distance, dx, wavelength)

A definition to calculate angular spectrum based beam propagation.

Parameters:

  • field
               Complex field (MxN).
    
  • k
               Wave number of a wave, see odak.wave.wavenumber for more.
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    

Returns:

  • result ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def angular_spectrum(field, k, distance, dx, wavelength):
    """
    A definition to calculate angular spectrum based beam propagation.

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    k                : odak.wave.wavenumber
                       Wave number of a wave, see odak.wave.wavenumber for more.
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.

    Returns
    -------
    result           : np.complex
                       Final complex field (MxN).
    """
    nv, nu = field.shape
    x = np.linspace(-nu/2*dx, nu/2*dx, nu)
    y = np.linspace(-nv/2*dx, nv/2*dx, nv)
    X, Y = np.meshgrid(x, y)
    Z = X**2+Y**2
    h = 1./(1j*wavelength*distance)*np.exp(1j*k*(distance+Z/2/distance))
    h = np.fft.fft2(np.fft.fftshift(h))*dx**2
    U1 = np.fft.fft2(np.fft.fftshift(field))
    U2 = h*U1
    result = np.fft.ifftshift(np.fft.ifft2(U2))
    return result

band_extended_angular_spectrum(field, k, distance, dx, wavelength)

A definition to calculate bandextended angular spectrum based beam propagation. For more Zhang, Wenhui, Hao Zhang, and Guofan Jin. "Band-extended angular spectrum method for accurate diffraction calculation in a wide propagation range." Optics Letters 45.6 (2020): 1543-1546.

Parameters:

  • field
               Complex field (MxN).
    
  • k
               Wave number of a wave, see odak.wave.wavenumber for more.
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    

Returns:

  • result ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def band_extended_angular_spectrum(field, k, distance, dx, wavelength):
    """
    A definition to calculate bandextended angular spectrum based beam propagation. For more Zhang, Wenhui, Hao Zhang, and Guofan Jin. "Band-extended angular spectrum method for accurate diffraction calculation in a wide propagation range." Optics Letters 45.6 (2020): 1543-1546.

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    k                : odak.wave.wavenumber
                       Wave number of a wave, see odak.wave.wavenumber for more.
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.

    Returns
    -------
    result           : np.complex
                       Final complex field (MxN).
    """
    iflag = -1
    eps = 10**(-12)
    nv, nu = field.shape
    l = nu*dx
    x = np.linspace(-l/2, l/2, nu)
    y = np.linspace(-l/2, l/2, nv)
    X, Y = np.meshgrid(x, y)
    Z = X**2+Y**2
    fx = np.linspace(-1./2./dx, 1./2./dx, nu)
    fy = np.linspace(-1./2./dx, 1./2./dx, nv)
    FX, FY = np.meshgrid(fx, fy)
    K = nu/2/np.amax(fx)
    fcn = 1./2*(nu/wavelength/np.abs(distance))**0.5
    ss = np.abs(fcn)/np.amax(np.abs(fx))
    zc = nu*dx**2/wavelength
    if np.abs(distance) < zc:
        fxn = fx
        fyn = fy
    else:
        fxn = fx*ss
        fyn = fy*ss
    FXN, FYN = np.meshgrid(fxn, fyn)
    Hn = np.exp(1j*k*distance*(1-(FXN*wavelength)**2-(FYN*wavelength)**2)**0.5)
    X = X/np.amax(X)*np.pi
    Y = Y/np.amax(Y)*np.pi
    t_asmNUFT = nufft2(field, X*ss, Y*ss, sign=iflag, eps=eps)
    result = nuifft2(Hn*t_asmNUFT, X*ss, Y*ss, sign=-iflag, eps=eps)
    return result

band_limited_angular_spectrum(field, k, distance, dx, wavelength)

A definition to calculate bandlimited angular spectrum based beam propagation. For more Matsushima, Kyoji, and Tomoyoshi Shimobaba. "Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields." Optics express 17.22 (2009): 19662-19673.

Parameters:

  • field
               Complex field (MxN).
    
  • k
               Wave number of a wave, see odak.wave.wavenumber for more.
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    

Returns:

  • result ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def band_limited_angular_spectrum(field, k, distance, dx, wavelength):
    """
    A definition to calculate bandlimited angular spectrum based beam propagation. For more Matsushima, Kyoji, and Tomoyoshi Shimobaba. "Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields." Optics express 17.22 (2009): 19662-19673.

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    k                : odak.wave.wavenumber
                       Wave number of a wave, see odak.wave.wavenumber for more.
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.

    Returns
    -------
    result           : np.complex
                       Final complex field (MxN).
    """
    nv, nu = field.shape
    x = np.linspace(-nu/2*dx, nu/2*dx, nu)
    y = np.linspace(-nv/2*dx, nv/2*dx, nv)
    X, Y = np.meshgrid(x, y)
    Z = X**2+Y**2
    h = 1./(1j*wavelength*distance)*np.exp(1j*k*(distance+Z/2/distance))
    h = np.fft.fft2(np.fft.fftshift(h))*dx**2
    flimx = np.ceil(1/(((2*distance*(1./(nu)))**2+1)**0.5*wavelength))
    flimy = np.ceil(1/(((2*distance*(1./(nv)))**2+1)**0.5*wavelength))
    mask = np.zeros((nu, nv), dtype=np.complex64)
    mask = (np.abs(X) < flimx) & (np.abs(Y) < flimy)
    mask = set_amplitude(h, mask)
    U1 = np.fft.fft2(np.fft.fftshift(field))
    U2 = mask*U1
    result = np.fft.ifftshift(np.fft.ifft2(U2))
    return result

calculate_intensity(field)

Definition to calculate intensity of a single or multiple given electric field(s).

Parameters:

  • field
           Electric fields or an electric field.
    

Returns:

  • intensity ( float ) –

    Intensity or intensities of electric field(s).

Source code in odak/wave/__init__.py
def calculate_intensity(field):
    """
    Definition to calculate intensity of a single or multiple given electric field(s).

    Parameters
    ----------
    field        : ndarray.complex or complex
                   Electric fields or an electric field.

    Returns
    -------
    intensity    : float
                   Intensity or intensities of electric field(s).
    """
    intensity = np.abs(field)**2
    return intensity

distance_between_two_points(point1, point2)

Definition to calculate distance between two given points.

Parameters:

  • point1
          First point in X,Y,Z.
    
  • point2
          Second point in X,Y,Z.
    

Returns:

  • distance ( float ) –

    Distance in between given two points.

Source code in odak/tools/vector.py
def distance_between_two_points(point1, point2):
    """
    Definition to calculate distance between two given points.

    Parameters
    ----------
    point1      : list
                  First point in X,Y,Z.
    point2      : list
                  Second point in X,Y,Z.

    Returns
    ----------
    distance    : float
                  Distance in between given two points.
    """
    point1 = np.asarray(point1)
    point2 = np.asarray(point2)
    if len(point1.shape) == 1 and len(point2.shape) == 1:
        distance = np.sqrt(np.sum((point1-point2)**2))
    elif len(point1.shape) == 2 or len(point2.shape) == 2:
        distance = np.sqrt(np.sum((point1-point2)**2, axis=1))
    return distance

double_convergence(nx, ny, k, r, dx)

A definition to generate initial phase for a Gerchberg-Saxton method. For more details consult Sun, Peng, et al. "Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm." Optics express 26.8 (2018): 10140-10151.

Parameters:

  • nx
         Size of the output along X.
    
  • ny
         Size of the output along Y.
    
  • k
         See odak.wave.wavenumber for more.
    
  • r
         The distance between location of a light source and an image plane.
    
  • dx
         Pixel pitch.
    

Returns:

  • function ( ndarray ) –

    Generated phase pattern for a Gerchberg-Saxton method.

Source code in odak/wave/lens.py
def double_convergence(nx, ny, k, r, dx):
    """
    A definition to generate initial phase for a Gerchberg-Saxton method. For more details consult Sun, Peng, et al. "Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm." Optics express 26.8 (2018): 10140-10151.

    Parameters
    ----------
    nx         : int
                 Size of the output along X.
    ny         : int
                 Size of the output along Y.
    k          : odak.wave.wavenumber
                 See odak.wave.wavenumber for more.
    r          : float
                 The distance between location of a light source and an image plane.
    dx         : float
                 Pixel pitch.

    Returns
    -------
    function   : ndarray
                 Generated phase pattern for a Gerchberg-Saxton method.
    """
    size = [ny, nx]
    x = np.linspace(-size[0]*dx/2, size[0]*dx/2, size[0])
    y = np.linspace(-size[1]*dx/2, size[1]*dx/2, size[1])
    X, Y = np.meshgrid(x, y)
    Z = X**2+Y**2
    w = np.exp(1j*k*Z/r)
    return w

electric_field_per_plane_wave(amplitude, opd, k, phase=0, w=0, t=0)

Definition to return state of a plane wave at a particular distance and time.

Parameters:

  • amplitude
           Amplitude of a wave.
    
  • opd
           Optical path difference in mm.
    
  • k
           Wave number of a wave, see odak.wave.parameters.wavenumber for more.
    
  • phase
           Initial phase of a wave.
    
  • w
           Rotation speed of a wave, see odak.wave.parameters.rotationspeed for more.
    
  • t
           Time in seconds.
    

Returns:

  • field ( complex ) –

    A complex number that provides the resultant field in the complex form A*e^(j(wt+phi)).

Source code in odak/wave/vector.py
def electric_field_per_plane_wave(amplitude, opd, k, phase=0, w=0, t=0):
    """
    Definition to return state of a plane wave at a particular distance and time.

    Parameters
    ----------
    amplitude    : float
                   Amplitude of a wave.
    opd          : float
                   Optical path difference in mm.
    k            : float
                   Wave number of a wave, see odak.wave.parameters.wavenumber for more.
    phase        : float
                   Initial phase of a wave.
    w            : float
                   Rotation speed of a wave, see odak.wave.parameters.rotationspeed for more.
    t            : float
                   Time in seconds.

    Returns
    -------
    field        : complex
                   A complex number that provides the resultant field in the complex form A*e^(j(wt+phi)).
    """
    field = amplitude*np.exp(1j*(-w*t+opd*k+phase))/opd**2
    return field

fraunhofer(field, k, distance, dx, wavelength)

A definition to calculate Fraunhofer based beam propagation.

Parameters:

  • field
               Complex field (MxN).
    
  • k
               Wave number of a wave, see odak.wave.wavenumber for more.
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    

Returns:

  • result ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def fraunhofer(field, k, distance, dx, wavelength):
    """
    A definition to calculate Fraunhofer based beam propagation.

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    k                : odak.wave.wavenumber
                       Wave number of a wave, see odak.wave.wavenumber for more.
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.

    Returns
    -------
    result           : np.complex
                       Final complex field (MxN).
    """
    nv, nu = field.shape
    l = nu*dx
    l2 = wavelength*distance/dx
    dx2 = wavelength*distance/l
    fx = np.linspace(-l2/2., l2/2., nu)
    fy = np.linspace(-l2/2., l2/2., nv)
    FX, FY = np.meshgrid(fx, fy)
    FZ = FX**2+FY**2
    c = np.exp(1j*k*distance)/(1j*wavelength*distance) * \
        np.exp(1j*k/(2*distance)*FZ)
    result = c*np.fft.ifftshift(np.fft.fft2(np.fft.fftshift(field)))*dx**2
    return result

fraunhofer_equal_size_adjust(field, distance, dx, wavelength)

A definition to match the physical size of the original field with the propagated field.

Parameters:

  • field
               Complex field (MxN).
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    

Returns:

  • new_field ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def fraunhofer_equal_size_adjust(field, distance, dx, wavelength):
    """
    A definition to match the physical size of the original field with the propagated field.

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.

    Returns
    -------
    new_field        : np.complex
                       Final complex field (MxN).
    """
    nv, nu = field.shape
    l1 = nu*dx
    l2 = wavelength*distance/dx
    m = l1/l2
    px = int(m*nu)
    py = int(m*nv)
    nx = int(field.shape[0]/2-px/2)
    ny = int(field.shape[1]/2-py/2)
    new_field = np.copy(field[nx:nx+px, ny:ny+py])
    return new_field

fraunhofer_inverse(field, k, distance, dx, wavelength)

A definition to calculate Inverse Fraunhofer based beam propagation.

Parameters:

  • field
               Complex field (MxN).
    
  • k
               Wave number of a wave, see odak.wave.wavenumber for more.
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    

Returns:

  • result ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def fraunhofer_inverse(field, k, distance, dx, wavelength):
    """
    A definition to calculate Inverse Fraunhofer based beam propagation.

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    k                : odak.wave.wavenumber
                       Wave number of a wave, see odak.wave.wavenumber for more.
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.

    Returns
    -------
    result           : np.complex
                       Final complex field (MxN).
    """
    distance = np.abs(distance)
    nv, nu = field.shape
    l = nu*dx
    l2 = wavelength*distance/dx
    dx2 = wavelength*distance/l
    fx = np.linspace(-l2/2., l2/2., nu)
    fy = np.linspace(-l2/2., l2/2., nv)
    FX, FY = np.meshgrid(fx, fy)
    FZ = FX**2+FY**2
    c = np.exp(1j*k*distance)/(1j*wavelength*distance) * \
        np.exp(1j*k/(2*distance)*FZ)
    result = np.fft.fftshift(np.fft.ifft2(np.fft.ifftshift(field/dx**2/c)))
    return result

generate_complex_field(amplitude, phase)

Definition to generate a complex field with a given amplitude and phase.

Parameters:

  • amplitude
                Amplitude of the field.
    
  • phase
                Phase of the field.
    

Returns:

  • field ( ndarray ) –

    Complex field.

Source code in odak/wave/__init__.py
def generate_complex_field(amplitude, phase):
    """
    Definition to generate a complex field with a given amplitude and phase.

    Parameters
    ----------
    amplitude         : ndarray
                        Amplitude of the field.
    phase             : ndarray
                        Phase of the field.

    Returns
    -------
    field             : ndarray
                        Complex field.
    """
    field = amplitude*np.cos(phase)+1j*amplitude*np.sin(phase)
    return field

gerchberg_saxton(field, n_iterations, distance, dx, wavelength, slm_range=6.28, propagation_type='IR Fresnel', initial_phase=None)

Definition to compute a hologram using an iterative method called Gerchberg-Saxton phase retrieval algorithm. For more on the method, see: Gerchberg, Ralph W. "A practical algorithm for the determination of phase from image and diffraction plane pictures." Optik 35 (1972): 237-246.

Parameters:

  • field
               Complex field (MxN).
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    
  • slm_range
               Typically this is equal to two pi. See odak.wave.adjust_phase_only_slm_range() for more.
    
  • propagation_type (str, default: 'IR Fresnel' ) –
               Type of the propagation (IR Fresnel, TR Fresnel, Fraunhofer).
    
  • initial_phase
               Phase to be added to the initial value.
    

Returns:

  • hologram ( complex ) –

    Calculated complex hologram.

  • reconstruction ( complex ) –

    Calculated reconstruction using calculated hologram.

Source code in odak/wave/classical.py
def gerchberg_saxton(field, n_iterations, distance, dx, wavelength, slm_range=6.28, propagation_type='IR Fresnel', initial_phase=None):
    """
    Definition to compute a hologram using an iterative method called Gerchberg-Saxton phase retrieval algorithm. For more on the method, see: Gerchberg, Ralph W. "A practical algorithm for the determination of phase from image and diffraction plane pictures." Optik 35 (1972): 237-246.

    Parameters
    ----------
    field            : np.complex64
                       Complex field (MxN).
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.
    slm_range        : float
                       Typically this is equal to two pi. See odak.wave.adjust_phase_only_slm_range() for more.
    propagation_type : str
                       Type of the propagation (IR Fresnel, TR Fresnel, Fraunhofer).
    initial_phase    : np.complex64
                       Phase to be added to the initial value.

    Returns
    -------
    hologram         : np.complex
                       Calculated complex hologram.
    reconstruction   : np.complex
                       Calculated reconstruction using calculated hologram. 
    """
    k = wavenumber(wavelength)
    target = calculate_amplitude(field)
    hologram = generate_complex_field(np.ones(field.shape), 0)
    hologram = zero_pad(hologram)
    if type(initial_phase) == type(None):
        hologram = add_random_phase(hologram)
    else:
        initial_phase = zero_pad(initial_phase)
        hologram = add_phase(hologram, initial_phase)
    center = [int(hologram.shape[0]/2.), int(hologram.shape[1]/2.)]
    orig_shape = [int(field.shape[0]/2.), int(field.shape[1]/2.)]
    for i in tqdm(range(n_iterations), leave=False):
        reconstruction = propagate_beam(
            hologram, k, distance, dx, wavelength, propagation_type)
        new_target = calculate_amplitude(reconstruction)
        new_target[
            center[0]-orig_shape[0]:center[0]+orig_shape[0],
            center[1]-orig_shape[1]:center[1]+orig_shape[1]
        ] = target
        reconstruction = generate_complex_field(
            new_target, calculate_phase(reconstruction))
        hologram = propagate_beam(
            reconstruction, k, -distance, dx, wavelength, propagation_type)
        hologram = generate_complex_field(1, calculate_phase(hologram))
        hologram = hologram[
            center[0]-orig_shape[0]:center[0]+orig_shape[0],
            center[1]-orig_shape[1]:center[1]+orig_shape[1],
        ]
        hologram = zero_pad(hologram)
    reconstruction = propagate_beam(
        hologram, k, distance, dx, wavelength, propagation_type)
    hologram = hologram[
        center[0]-orig_shape[0]:center[0]+orig_shape[0],
        center[1]-orig_shape[1]:center[1]+orig_shape[1]
    ]
    reconstruction = reconstruction[
        center[0]-orig_shape[0]:center[0]+orig_shape[0],
        center[1]-orig_shape[1]:center[1]+orig_shape[1]
    ]
    return hologram, reconstruction

gerchberg_saxton_3d(fields, n_iterations, distances, dx, wavelength, slm_range=6.28, propagation_type='IR Fresnel', initial_phase=None, target_type='no constraint', coefficients=None)

Definition to compute a multi plane hologram using an iterative method called Gerchberg-Saxton phase retrieval algorithm. For more on the method, see: Zhou, Pengcheng, et al. "30.4: Multi‐plane holographic display with a uniform 3D Gerchberg‐Saxton algorithm." SID Symposium Digest of Technical Papers. Vol. 46. No. 1. 2015.

Parameters:

  • fields
               Complex fields (MxN).
    
  • distances
               Propagation distances.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    
  • slm_range
               Typically this is equal to two pi. See odak.wave.adjust_phase_only_slm_range() for more.
    
  • propagation_type (str, default: 'IR Fresnel' ) –
               Type of the propagation (IR Fresnel, TR Fresnel, Fraunhofer).
    
  • initial_phase
               Phase to be added to the initial value.
    
  • target_type
               Target type. `No constraint` targets the input target as is. `Double constraint` follows the idea in this paper, which claims to suppress speckle: Chang, Chenliang, et al. "Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg–Saxton algorithm." Applied optics 54.23 (2015): 6994-7001.
    

Returns:

  • hologram ( complex ) –

    Calculated complex hologram.

Source code in odak/wave/classical.py
def gerchberg_saxton_3d(fields, n_iterations, distances, dx, wavelength, slm_range=6.28, propagation_type='IR Fresnel', initial_phase=None, target_type='no constraint', coefficients=None):
    """
    Definition to compute a multi plane hologram using an iterative method called Gerchberg-Saxton phase retrieval algorithm. For more on the method, see: Zhou, Pengcheng, et al. "30.4: Multi‐plane holographic display with a uniform 3D Gerchberg‐Saxton algorithm." SID Symposium Digest of Technical Papers. Vol. 46. No. 1. 2015.

    Parameters
    ----------
    fields           : np.complex64
                       Complex fields (MxN).
    distances        : list
                       Propagation distances.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.
    slm_range        : float
                       Typically this is equal to two pi. See odak.wave.adjust_phase_only_slm_range() for more.
    propagation_type : str
                       Type of the propagation (IR Fresnel, TR Fresnel, Fraunhofer).
    initial_phase    : np.complex64
                       Phase to be added to the initial value.
    target_type      : str
                       Target type. `No constraint` targets the input target as is. `Double constraint` follows the idea in this paper, which claims to suppress speckle: Chang, Chenliang, et al. "Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg–Saxton algorithm." Applied optics 54.23 (2015): 6994-7001. 

    Returns
    -------
    hologram         : np.complex
                       Calculated complex hologram.
    """
    k = wavenumber(wavelength)
    targets = calculate_amplitude(np.asarray(fields)).astype(np.float64)
    hologram = generate_complex_field(np.ones(targets[0].shape), 0)
    hologram = zero_pad(hologram)
    if type(initial_phase) == type(None):
        hologram = add_random_phase(hologram)
    else:
        initial_phase = zero_pad(initial_phase)
        hologram = add_phase(hologram, initial_phase)
    center = [int(hologram.shape[0]/2.), int(hologram.shape[1]/2.)]
    orig_shape = [int(fields[0].shape[0]/2.), int(fields[0].shape[1]/2.)]
    holograms = np.zeros(
        (len(distances), hologram.shape[0], hologram.shape[1]), dtype=np.complex64)
    for i in tqdm(range(n_iterations), leave=False):
        for distance_id in tqdm(range(len(distances)), leave=False):
            distance = distances[distance_id]
            reconstruction = propagate_beam(
                hologram, k, distance, dx, wavelength, propagation_type)
            if target_type == 'double constraint':
                if type(coefficients) == type(None):
                    raise Exception(
                        "Provide coeeficients of alpha,beta and gamma for double constraint.")
                alpha = coefficients[0]
                beta = coefficients[1]
                gamma = coefficients[2]
                target_current = 2*alpha * \
                    np.copy(targets[distance_id])-beta * \
                    calculate_amplitude(reconstruction)
                target_current[target_current == 0] = gamma * \
                    np.abs(reconstruction[target_current == 0])
            elif target_type == 'no constraint':
                target_current = np.abs(targets[distance_id])
            new_target = calculate_amplitude(reconstruction)
            new_target[
                center[0]-orig_shape[0]:center[0]+orig_shape[0],
                center[1]-orig_shape[1]:center[1]+orig_shape[1]
            ] = target_current
            reconstruction = generate_complex_field(
                new_target, calculate_phase(reconstruction))
            hologram_layer = propagate_beam(
                reconstruction, k, -distance, dx, wavelength, propagation_type)
            hologram_layer = generate_complex_field(
                1., calculate_phase(hologram_layer))
            hologram_layer = hologram_layer[
                center[0]-orig_shape[0]:center[0]+orig_shape[0],
                center[1]-orig_shape[1]:center[1]+orig_shape[1]
            ]
            hologram_layer = zero_pad(hologram_layer)
            holograms[distance_id] = hologram_layer
        hologram = np.sum(holograms, axis=0)
    hologram = hologram[
        center[0]-orig_shape[0]:center[0]+orig_shape[0],
        center[1]-orig_shape[1]:center[1]+orig_shape[1]
    ]
    return hologram

impulse_response_fresnel(field, k, distance, dx, wavelength)

A definition to calculate impulse response based Fresnel approximation for beam propagation.

Parameters:

  • field
               Complex field (MxN).
    
  • k
               Wave number of a wave, see odak.wave.wavenumber for more.
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    

Returns:

  • result ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def impulse_response_fresnel(field, k, distance, dx, wavelength):
    """
    A definition to calculate impulse response based Fresnel approximation for beam propagation.

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    k                : odak.wave.wavenumber
                       Wave number of a wave, see odak.wave.wavenumber for more.
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.

    Returns
    -------
    result           : np.complex
                       Final complex field (MxN).

    """
    nv, nu = field.shape
    x = np.linspace(-nu / 2 * dx, nu / 2 * dx, nu)
    y = np.linspace(-nv / 2 * dx, nv / 2 * dx, nv)
    X, Y = np.meshgrid(x, y)
    h = 1. / (1j * wavelength * distance) * np.exp(1j * k / (2 * distance) * (X ** 2 + Y ** 2))
    H = np.fft.fft2(np.fft.fftshift(h))
    U1 = np.fft.fft2(np.fft.fftshift(field))
    U2 = H * U1
    result = np.fft.ifftshift(np.fft.ifft2(U2))
    result = np.roll(result, shift = (1, 1), axis = (0, 1))
    return result

linear_grating(nx, ny, every=2, add=3.14, axis='x')

A definition to generate a linear grating.

Parameters:

  • nx
         Size of the output along X.
    
  • ny
         Size of the output along Y.
    
  • every
         Add the add value at every given number.
    
  • add
         Angle to be added.
    
  • axis
         Axis eiter X,Y or both.
    

Returns:

  • field ( ndarray ) –

    Linear grating term.

Source code in odak/wave/lens.py
def linear_grating(nx, ny, every=2, add=3.14, axis='x'):
    """
    A definition to generate a linear grating.

    Parameters
    ----------
    nx         : int
                 Size of the output along X.
    ny         : int
                 Size of the output along Y.
    every      : int
                 Add the add value at every given number.
    add        : float
                 Angle to be added.
    axis       : string
                 Axis eiter X,Y or both.

    Returns
    -------
    field      : ndarray
                 Linear grating term.
    """
    grating = np.zeros((nx, ny), dtype=np.complex64)
    if axis == 'x':
        grating[::every, :] = np.exp(1j*add)
    if axis == 'y':
        grating[:, ::every] = np.exp(1j*add)
    if axis == 'xy':
        checker = np.indices((nx, ny)).sum(axis=0) % every
        checker += 1
        checker = checker % 2
        grating = np.exp(1j*checker*add)
    return grating

nufft2(field, fx, fy, size=None, sign=1, eps=10 ** -12)

A definition to take 2D Non-Uniform Fast Fourier Transform (NUFFT).

Parameters:

  • field
          Input field.
    
  • fx
          Frequencies along x axis.
    
  • fy
          Frequencies along y axis.
    
  • size
          Size.
    
  • sign
          Sign of the exponential used in NUFFT kernel.
    
  • eps
          Accuracy of NUFFT.
    

Returns:

  • result ( ndarray ) –

    Inverse NUFFT of the input field.

Source code in odak/tools/matrix.py
def nufft2(field, fx, fy, size=None, sign=1, eps=10**(-12)):
    """
    A definition to take 2D Non-Uniform Fast Fourier Transform (NUFFT).

    Parameters
    ----------
    field       : ndarray
                  Input field.
    fx          : ndarray
                  Frequencies along x axis.
    fy          : ndarray
                  Frequencies along y axis.
    size        : list
                  Size.
    sign        : float
                  Sign of the exponential used in NUFFT kernel.
    eps         : float
                  Accuracy of NUFFT.

    Returns
    ----------
    result      : ndarray
                  Inverse NUFFT of the input field.
    """
    try:
        import finufft
    except:
        print('odak.tools.nufft2 requires finufft to be installed: pip install finufft')
    image = np.copy(field).astype(np.complex128)
    result = finufft.nufft2d2(
        fx.flatten(), fy.flatten(), image, eps=eps, isign=sign)
    if type(size) == type(None):
        result = result.reshape(field.shape)
    else:
        result = result.reshape(size)
    return result

nuifft2(field, fx, fy, size=None, sign=1, eps=10 ** -12)

A definition to take 2D Adjoint Non-Uniform Fast Fourier Transform (NUFFT).

Parameters:

  • field
          Input field.
    
  • fx
          Frequencies along x axis.
    
  • fy
          Frequencies along y axis.
    
  • size
          Shape of the NUFFT calculated for an input field.
    
  • sign
          Sign of the exponential used in NUFFT kernel.
    
  • eps
          Accuracy of NUFFT.
    

Returns:

  • result ( ndarray ) –

    NUFFT of the input field.

Source code in odak/tools/matrix.py
def nuifft2(field, fx, fy, size=None, sign=1, eps=10**(-12)):
    """
    A definition to take 2D Adjoint Non-Uniform Fast Fourier Transform (NUFFT).

    Parameters
    ----------
    field       : ndarray
                  Input field.
    fx          : ndarray
                  Frequencies along x axis.
    fy          : ndarray
                  Frequencies along y axis.
    size        : list or ndarray
                  Shape of the NUFFT calculated for an input field.
    sign        : float
                  Sign of the exponential used in NUFFT kernel.
    eps         : float
                  Accuracy of NUFFT.

    Returns
    ----------
    result      : ndarray
                  NUFFT of the input field.
    """
    try:
        import finufft
    except:
        print('odak.tools.nuifft2 requires finufft to be installed: pip install finufft')
    image = np.copy(field).astype(np.complex128)
    if type(size) == type(None):
        result = finufft.nufft2d1(
            fx.flatten(),
            fy.flatten(),
            image.flatten(),
            image.shape,
            eps=eps,
            isign=sign
        )
    else:
        result = finufft.nufft2d1(
            fx.flatten(),
            fy.flatten(),
            image.flatten(),
            (size[0], size[1]),
            eps=eps,
            isign=sign
        )
    result = np.asarray(result)
    return result

prism_phase_function(nx, ny, k, angle, dx=0.001, axis='x')

A definition to generate 2D phase function that represents a prism. See Goodman's Introduction to Fourier Optics book for more.

Parameters:

  • nx
         Size of the output along X.
    
  • ny
         Size of the output along Y.
    
  • k
         See odak.wave.wavenumber for more.
    
  • angle
         Tilt angle of the prism in degrees.
    
  • dx
         Pixel pitch.
    
  • axis
         Axis of the prism.
    

Returns:

  • prism ( ndarray ) –

    Generated phase function for a prism.

Source code in odak/wave/lens.py
def prism_phase_function(nx, ny, k, angle, dx=0.001, axis='x'):
    """
    A definition to generate 2D phase function that represents a prism. See Goodman's Introduction to Fourier Optics book for more.

    Parameters
    ----------
    nx         : int
                 Size of the output along X.
    ny         : int
                 Size of the output along Y.
    k          : odak.wave.wavenumber
                 See odak.wave.wavenumber for more.
    angle      : float
                 Tilt angle of the prism in degrees.
    dx         : float
                 Pixel pitch.
    axis       : str
                 Axis of the prism.

    Returns
    -------
    prism      : ndarray
                 Generated phase function for a prism.
    """
    angle = np.radians(angle)
    size = [ny, nx]
    x = np.linspace(-size[0]*dx/2, size[0]*dx/2, size[0])
    y = np.linspace(-size[1]*dx/2, size[1]*dx/2, size[1])
    X, Y = np.meshgrid(x, y)
    if axis == 'y':
        prism = np.exp(-1j*k*np.sin(angle)*Y)
    elif axis == 'x':
        prism = np.exp(-1j*k*np.sin(angle)*X)
    return prism

produce_phase_only_slm_pattern(hologram, slm_range, filename=None, bits=8, default_range=6.28, illumination=None)

Definition for producing a pattern for a phase only Spatial Light Modulator (SLM) using a given field.

Parameters:

  • hologram
                 Input holographic field.
    
  • slm_range
                 Range of the phase only SLM in radians for a working wavelength (i.e. two pi). See odak.wave.adjust_phase_only_slm_range() for more.
    
  • filename
                 Optional variable, if provided the patterns will be save to given location.
    
  • bits
                 Quantization bits.
    
  • default_range
                 Default range of phase only SLM.
    
  • illumination
                 Spatial illumination distribution.
    

Returns:

  • pattern ( complex64 ) –

    Adjusted phase only pattern.

  • hologram_digital ( int ) –

    Digital representation of the hologram.

Source code in odak/wave/__init__.py
def produce_phase_only_slm_pattern(hologram, slm_range, filename=None, bits=8, default_range=6.28, illumination=None):
    """
    Definition for producing a pattern for a phase only Spatial Light Modulator (SLM) using a given field.

    Parameters
    ----------
    hologram           : np.complex64
                         Input holographic field.
    slm_range          : float
                         Range of the phase only SLM in radians for a working wavelength (i.e. two pi). See odak.wave.adjust_phase_only_slm_range() for more.
    filename           : str
                         Optional variable, if provided the patterns will be save to given location.
    bits               : int
                         Quantization bits.
    default_range      : float 
                         Default range of phase only SLM.
    illumination       : np.ndarray
                         Spatial illumination distribution.

    Returns
    -------
    pattern            : np.complex64
                         Adjusted phase only pattern.
    hologram_digital   : np.int
                         Digital representation of the hologram.
    """
    #hologram_phase   = calculate_phase(hologram) % default_range
    hologram_phase = calculate_phase(hologram)
    hologram_phase = hologram_phase % slm_range
    hologram_phase /= slm_range
    hologram_phase *= 2**bits
    hologram_phase = hologram_phase.astype(np.int32)
    hologram_digital = np.copy(hologram_phase)
    if type(filename) != type(None):
        save_image(
            filename,
            hologram_phase,
            cmin=0,
            cmax=2**bits
        )
    hologram_phase = hologram_phase.astype(np.float64)
    hologram_phase *= slm_range/2**bits
    if type(illumination) == type(None):
        A = 1.
    else:
        A = illumination
    return A*np.cos(hologram_phase)+A*1j*np.sin(hologram_phase), hologram_digital

propagate_beam(field, k, distance, dx, wavelength, propagation_type='IR Fresnel')

Definitions for Fresnel Impulse Response (IR), Angular Spectrum (AS), Bandlimited Angular Spectrum (BAS), Fresnel Transfer Function (TF), Fraunhofer diffraction in accordence with "Computational Fourier Optics" by David Vuelz. For more on Bandlimited Fresnel impulse response also known as Bandlimited Angular Spectrum method see "Band-limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields".

Parameters:

  • field
               Complex field (MxN).
    
  • k
               Wave number of a wave, see odak.wave.wavenumber for more.
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    
  • propagation_type (str, default: 'IR Fresnel' ) –
               Type of the propagation (IR Fresnel, Angular Spectrum, Bandlimited Angular Spectrum, TR Fresnel, Fraunhofer).
    

Returns:

  • result ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def propagate_beam(field, k, distance, dx, wavelength, propagation_type='IR Fresnel'):
    """
    Definitions for Fresnel Impulse Response (IR), Angular Spectrum (AS), Bandlimited Angular Spectrum (BAS), Fresnel Transfer Function (TF), Fraunhofer diffraction in accordence with "Computational Fourier Optics" by David Vuelz. For more on Bandlimited Fresnel impulse response also known as Bandlimited Angular Spectrum method see "Band-limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields".

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    k                : odak.wave.wavenumber
                       Wave number of a wave, see odak.wave.wavenumber for more.
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.
    propagation_type : str
                       Type of the propagation (IR Fresnel, Angular Spectrum, Bandlimited Angular Spectrum, TR Fresnel, Fraunhofer).

    Returns
    -------
    result           : np.complex
                       Final complex field (MxN).
    """
    if propagation_type == 'Rayleigh-Sommerfeld':
        result = rayleigh_sommerfeld(field, k, distance, dx, wavelength)
    elif propagation_type == 'Angular Spectrum':
        result = angular_spectrum(field, k, distance, dx, wavelength)
    elif propagation_type == 'Impulse Response Fresnel':
        result = impulse_response_fresnel(field, k, distance, dx, wavelength)
    elif propagation_type == 'Bandlimited Angular Spectrum':
        result = band_limited_angular_spectrum(
            field, k, distance, dx, wavelength)
    elif propagation_type == 'Bandextended Angular Spectrum':
        result = band_extended_angular_spectrum(
            field, k, distance, dx, wavelength)
    elif propagation_type == 'Adaptive Sampling Angular Spectrum':
        result = adaptive_sampling_angular_spectrum(
            field, k, distance, dx, wavelength)
    elif propagation_type == 'Transfer Function Fresnel':
        result = transfer_function_fresnel(field, k, distance, dx, wavelength)
    elif propagation_type == 'Fraunhofer':
        result = fraunhofer(field, k, distance, dx, wavelength)
    elif propagation_type == 'Fraunhofer Inverse':
        result = fraunhofer_inverse(field, k, distance, dx, wavelength)
    else:
        raise Exception("Unknown propagation type selected.")
    return result

propagate_field(points0, points1, field0, wave_number, direction=1)

Definition to propagate a field from points to an another points in space: propagate a given array of spherical sources to given set of points in space.

Parameters:

  • points0
            Start points (i.e. odak.tools.grid_sample).
    
  • points1
            End points (ie. odak.tools.grid_sample).
    
  • field0
            Field for given starting points.
    
  • wave_number
            Wave number of a wave, see odak.wave.wavenumber for more.
    
  • direction
            For propagating in forward direction set as 1, otherwise -1.
    

Returns:

  • field1 ( ndarray ) –

    Field for given end points.

Source code in odak/wave/vector.py
def propagate_field(points0, points1, field0, wave_number, direction=1):
    """
    Definition to propagate a field from points to an another points in space: propagate a given array of spherical sources to given set of points in space.

    Parameters
    ----------
    points0       : ndarray
                    Start points (i.e. odak.tools.grid_sample).
    points1       : ndarray
                    End points (ie. odak.tools.grid_sample).
    field0        : ndarray
                    Field for given starting points.
    wave_number   : float
                    Wave number of a wave, see odak.wave.wavenumber for more.
    direction     : float
                    For propagating in forward direction set as 1, otherwise -1.

    Returns
    -------
    field1        : ndarray
                    Field for given end points.
    """
    field1 = np.zeros(points1.shape[0], dtype=np.complex64)
    for point_id in range(points0.shape[0]):
        point = points0[point_id]
        distances = distance_between_two_points(
            point,
            points1
        )
        field1 += electric_field_per_plane_wave(
            calculate_amplitude(field0[point_id]),
            distances*direction,
            wave_number,
            phase=calculate_phase(field0[point_id])
        )
    return field1

propagate_plane_waves(field, opd, k, w=0, t=0)

Definition to propagate a field representing a plane wave at a particular distance and time.

Parameters:

  • field
           Complex field.
    
  • opd
           Optical path difference in mm.
    
  • k
           Wave number of a wave, see odak.wave.parameters.wavenumber for more.
    
  • w
           Rotation speed of a wave, see odak.wave.parameters.rotationspeed for more.
    
  • t
           Time in seconds.
    

Returns:

  • new_field ( complex ) –

    A complex number that provides the resultant field in the complex form A*e^(j(wt+phi)).

Source code in odak/wave/vector.py
def propagate_plane_waves(field, opd, k, w=0, t=0):
    """
    Definition to propagate a field representing a plane wave at a particular distance and time.

    Parameters
    ----------
    field        : complex
                   Complex field.
    opd          : float
                   Optical path difference in mm.
    k            : float
                   Wave number of a wave, see odak.wave.parameters.wavenumber for more.
    w            : float
                   Rotation speed of a wave, see odak.wave.parameters.rotationspeed for more.
    t            : float
                   Time in seconds.

    Returns
    -------
    new_field     : complex
                    A complex number that provides the resultant field in the complex form A*e^(j(wt+phi)).
    """
    new_field = field*np.exp(1j*(-w*t+opd*k))/opd**2
    return new_field

quadratic_phase_function(nx, ny, k, focal=0.4, dx=0.001, offset=[0, 0])

A definition to generate 2D quadratic phase function, which is typically use to represent lenses.

Parameters:

  • nx
         Size of the output along X.
    
  • ny
         Size of the output along Y.
    
  • k
         See odak.wave.wavenumber for more.
    
  • focal
         Focal length of the quadratic phase function.
    
  • dx
         Pixel pitch.
    
  • offset
         Deviation from the center along X and Y axes.
    

Returns:

  • function ( ndarray ) –

    Generated quadratic phase function.

Source code in odak/wave/lens.py
def quadratic_phase_function(nx, ny, k, focal=0.4, dx=0.001, offset=[0, 0]):
    """ 
    A definition to generate 2D quadratic phase function, which is typically use to represent lenses.

    Parameters
    ----------
    nx         : int
                 Size of the output along X.
    ny         : int
                 Size of the output along Y.
    k          : odak.wave.wavenumber
                 See odak.wave.wavenumber for more.
    focal      : float
                 Focal length of the quadratic phase function.
    dx         : float
                 Pixel pitch.
    offset     : list
                 Deviation from the center along X and Y axes.

    Returns
    -------
    function   : ndarray
                 Generated quadratic phase function.
    """
    size = [nx, ny]
    x = np.linspace(-size[0]*dx/2, size[0]*dx/2, size[0])-offset[1]*dx
    y = np.linspace(-size[1]*dx/2, size[1]*dx/2, size[1])-offset[0]*dx
    X, Y = np.meshgrid(x, y)
    Z = X**2+Y**2
    qwf = np.exp(1j*k*0.5*np.sin(Z/focal))
    return qwf

rayleigh_resolution(diameter, focal=None, wavelength=0.0005)

Definition to calculate rayleigh resolution limit of a lens with a certain focal length and an aperture. Lens is assumed to be focusing a plane wave at a focal distance.

Parameter

diameter : float Diameter of a lens. focal : float Focal length of a lens, when focal length is provided, spatial resolution is provided at the focal plane. When focal length isn't provided angular resolution is provided. wavelength : float Wavelength of light.

Returns:

  • resolution ( float ) –

    Resolvable angular or spatial spot size, see focal in parameters to know what to expect.

Source code in odak/wave/__init__.py
def rayleigh_resolution(diameter, focal=None, wavelength=0.0005):
    """
    Definition to calculate rayleigh resolution limit of a lens with a certain focal length and an aperture. Lens is assumed to be focusing a plane wave at a focal distance.

    Parameter
    ---------
    diameter    : float
                  Diameter of a lens.
    focal       : float
                  Focal length of a lens, when focal length is provided, spatial resolution is provided at the focal plane. When focal length isn't provided angular resolution is provided.
    wavelength  : float
                  Wavelength of light.

    Returns
    --------
    resolution  : float
                  Resolvable angular or spatial spot size, see focal in parameters to know what to expect.

    """
    resolution = 1.22*wavelength/diameter
    if type(focal) != type(None):
        resolution *= focal
    return resolution

rayleigh_sommerfeld(field, k, distance, dx, wavelength)

Definition to compute beam propagation using Rayleigh-Sommerfeld's diffraction formula (Huygens-Fresnel Principle). For more see Section 3.5.2 in Goodman, Joseph W. Introduction to Fourier optics. Roberts and Company Publishers, 2005.

Parameters:

  • field
               Complex field (MxN).
    
  • k
               Wave number of a wave, see odak.wave.wavenumber for more.
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    

Returns:

  • result ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def rayleigh_sommerfeld(field, k, distance, dx, wavelength):
    """
    Definition to compute beam propagation using Rayleigh-Sommerfeld's diffraction formula (Huygens-Fresnel Principle). For more see Section 3.5.2 in Goodman, Joseph W. Introduction to Fourier optics. Roberts and Company Publishers, 2005.

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    k                : odak.wave.wavenumber
                       Wave number of a wave, see odak.wave.wavenumber for more.
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.

    Returns
    -------
    result           : np.complex
                       Final complex field (MxN).
    """
    nv, nu = field.shape
    x = np.linspace(-nv * dx / 2, nv * dx / 2, nv)
    y = np.linspace(-nu * dx / 2, nu * dx / 2, nu)
    X, Y = np.meshgrid(x, y)
    Z = X ** 2 + Y ** 2
    result = np.zeros(field.shape, dtype=np.complex64)
    direction = int(distance/np.abs(distance))
    for i in range(nu):
        for j in range(nv):
            if field[i, j] != 0:
                r01 = np.sqrt(distance ** 2 + (X - X[i, j]) ** 2 + (Y - Y[i, j]) ** 2) * direction
                cosnr01 = np.cos(distance / r01)
                result += field[i, j] * np.exp(1j * k * r01) / r01 * cosnr01
    result *= 1. / (1j * wavelength)
    return result

rotationspeed(wavelength, c=3 * 10 ** 11)

Definition for calculating rotation speed of a wave (w in A*e^(j(wt+phi))).

Parameters:

  • wavelength
           Wavelength of a wave in mm.
    
  • c
           Speed of wave in mm/seconds. Default is the speed of light in the void!
    

Returns:

  • w ( float ) –

    Rotation speed.

Source code in odak/wave/__init__.py
def rotationspeed(wavelength, c=3*10**11):
    """
    Definition for calculating rotation speed of a wave (w in A*e^(j(wt+phi))).

    Parameters
    ----------
    wavelength   : float
                   Wavelength of a wave in mm.
    c            : float
                   Speed of wave in mm/seconds. Default is the speed of light in the void!

    Returns
    -------
    w            : float
                   Rotation speed.

    """
    f = c*wavelength
    w = 2*np.pi*f
    return w

set_amplitude(field, amplitude)

Definition to keep phase as is and change the amplitude of a given field.

Parameters:

  • field
           Complex field.
    
  • amplitude
           Amplitudes.
    

Returns:

  • new_field ( complex64 ) –

    Complex field.

Source code in odak/wave/__init__.py
def set_amplitude(field, amplitude):
    """
    Definition to keep phase as is and change the amplitude of a given field.

    Parameters
    ----------
    field        : np.complex64
                   Complex field.
    amplitude    : np.array or np.complex64
                   Amplitudes.

    Returns
    -------
    new_field    : np.complex64
                   Complex field.
    """
    amplitude = calculate_amplitude(amplitude)
    phase = calculate_phase(field)
    new_field = amplitude*np.cos(phase)+1j*amplitude*np.sin(phase)
    return new_field

transfer_function_fresnel(field, k, distance, dx, wavelength)

A definition to calculate convolution based Fresnel approximation for beam propagation.

Parameters:

  • field
               Complex field (MxN).
    
  • k
               Wave number of a wave, see odak.wave.wavenumber for more.
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    

Returns:

  • result ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def transfer_function_fresnel(field, k, distance, dx, wavelength):
    """
    A definition to calculate convolution based Fresnel approximation for beam propagation.

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    k                : odak.wave.wavenumber
                       Wave number of a wave, see odak.wave.wavenumber for more.
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.

    Returns
    -------
    result           : np.complex
                       Final complex field (MxN).

    """
    nv, nu = field.shape
    fx = np.linspace(-1. / 2. /dx, 1. /2. /dx, nu)
    fy = np.linspace(-1. / 2. /dx, 1. /2. /dx, nv)
    FX, FY = np.meshgrid(fx, fy)
    H = np.exp(1j * k * distance * (1 - (FX * wavelength) ** 2 - (FY * wavelength) ** 2) ** 0.5)
    U1 = np.fft.fftshift(np.fft.fft2(np.fft.fftshift(field)))
    U2 = H * U1
    result = np.fft.ifftshift(np.fft.ifft2(np.fft.ifftshift(U2)))
    return result

wavenumber(wavelength)

Definition for calculating the wavenumber of a plane wave.

Parameters:

  • wavelength
           Wavelength of a wave in mm.
    

Returns:

  • k ( float ) –

    Wave number for a given wavelength.

Source code in odak/wave/__init__.py
def wavenumber(wavelength):
    """
    Definition for calculating the wavenumber of a plane wave.

    Parameters
    ----------
    wavelength   : float
                   Wavelength of a wave in mm.

    Returns
    -------
    k            : float
                   Wave number for a given wavelength.
    """
    k = 2*np.pi/wavelength
    return k

zero_pad(field, size=None, method='center')

Definition to zero pad a MxN array to 2Mx2N array.

Parameters:

  • field
                Input field MxN array.
    
  • size
                Size to be zeropadded.
    
  • method
                Zeropad either by placing the content to center or to the left.
    

Returns:

  • field_zero_padded ( ndarray ) –

    Zeropadded version of the input field.

Source code in odak/tools/matrix.py
def zero_pad(field, size=None, method='center'):
    """
    Definition to zero pad a MxN array to 2Mx2N array.

    Parameters
    ----------
    field             : ndarray
                        Input field MxN array.
    size              : list
                        Size to be zeropadded.
    method            : str
                        Zeropad either by placing the content to center or to the left.

    Returns
    ----------
    field_zero_padded : ndarray
                        Zeropadded version of the input field.
    """
    if type(size) == type(None):
        hx = int(np.ceil(field.shape[0])/2)
        hy = int(np.ceil(field.shape[1])/2)
    else:
        hx = int(np.ceil((size[0]-field.shape[0])/2))
        hy = int(np.ceil((size[1]-field.shape[1])/2))
    if method == 'center':
        field_zero_padded = np.pad(
            field, ([hx, hx], [hy, hy]), constant_values=(0, 0))
    elif method == 'left aligned':
        field_zero_padded = np.pad(
            field, ([0, 2*hx], [0, 2*hy]), constant_values=(0, 0))
    if type(size) != type(None):
        field_zero_padded = field_zero_padded[0:size[0], 0:size[1]]
    return field_zero_padded

adaptive_sampling_angular_spectrum(field, k, distance, dx, wavelength)

A definition to calculate adaptive sampling angular spectrum based beam propagation. For more Zhang, Wenhui, Hao Zhang, and Guofan Jin. "Adaptive-sampling angular spectrum method with full utilization of space-bandwidth product." Optics Letters 45.16 (2020): 4416-4419.

Parameters:

  • field
               Complex field (MxN).
    
  • k
               Wave number of a wave, see odak.wave.wavenumber for more.
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    

Returns:

  • result ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def adaptive_sampling_angular_spectrum(field, k, distance, dx, wavelength):
    """
    A definition to calculate adaptive sampling angular spectrum based beam propagation. For more Zhang, Wenhui, Hao Zhang, and Guofan Jin. "Adaptive-sampling angular spectrum method with full utilization of space-bandwidth product." Optics Letters 45.16 (2020): 4416-4419.

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    k                : odak.wave.wavenumber
                       Wave number of a wave, see odak.wave.wavenumber for more.
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.

    Returns
    -------
    result           : np.complex
                       Final complex field (MxN).
    """
    iflag = -1
    eps = 10**(-12)
    nv, nu = field.shape
    l = nu*dx
    x = np.linspace(-l/2, l/2, nu)
    y = np.linspace(-l/2, l/2, nv)
    X, Y = np.meshgrid(x, y)
    fx = np.linspace(-1./2./dx, 1./2./dx, nu)
    fy = np.linspace(-1./2./dx, 1./2./dx, nv)
    FX, FY = np.meshgrid(fx, fy)
    forig = 1./2./dx
    fc2 = 1./2*(nu/wavelength/np.abs(distance))**0.5
    ss = np.abs(fc2)/forig
    zc = nu*dx**2/wavelength
    K = nu/2/np.amax(np.abs(fx))
    m = 2
    nnu2 = m*nu
    nnv2 = m*nv
    fxn = np.linspace(-1./2./dx, 1./2./dx, nnu2)
    fyn = np.linspace(-1./2./dx, 1./2./dx, nnv2)
    if np.abs(distance) > zc*2:
        fxn = fxn*ss
        fyn = fyn*ss
    FXN, FYN = np.meshgrid(fxn, fyn)
    Hn = np.exp(1j*k*distance*(1-(FXN*wavelength)**2-(FYN*wavelength)**2)**0.5)
    FX = FXN/np.amax(FXN)*np.pi
    FY = FYN/np.amax(FYN)*np.pi
    t_2 = nufft2(field, FX*ss, FY*ss, size=[nnv2, nnu2], sign=iflag, eps=eps)
    FX = FX/np.amax(FX)*np.pi
    FY = FY/np.amax(FY)*np.pi
    result = nuifft2(Hn*t_2, FX*ss, FY*ss, size=[nv, nu], sign=-iflag, eps=eps)
    return result

angular_spectrum(field, k, distance, dx, wavelength)

A definition to calculate angular spectrum based beam propagation.

Parameters:

  • field
               Complex field (MxN).
    
  • k
               Wave number of a wave, see odak.wave.wavenumber for more.
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    

Returns:

  • result ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def angular_spectrum(field, k, distance, dx, wavelength):
    """
    A definition to calculate angular spectrum based beam propagation.

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    k                : odak.wave.wavenumber
                       Wave number of a wave, see odak.wave.wavenumber for more.
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.

    Returns
    -------
    result           : np.complex
                       Final complex field (MxN).
    """
    nv, nu = field.shape
    x = np.linspace(-nu/2*dx, nu/2*dx, nu)
    y = np.linspace(-nv/2*dx, nv/2*dx, nv)
    X, Y = np.meshgrid(x, y)
    Z = X**2+Y**2
    h = 1./(1j*wavelength*distance)*np.exp(1j*k*(distance+Z/2/distance))
    h = np.fft.fft2(np.fft.fftshift(h))*dx**2
    U1 = np.fft.fft2(np.fft.fftshift(field))
    U2 = h*U1
    result = np.fft.ifftshift(np.fft.ifft2(U2))
    return result

band_extended_angular_spectrum(field, k, distance, dx, wavelength)

A definition to calculate bandextended angular spectrum based beam propagation. For more Zhang, Wenhui, Hao Zhang, and Guofan Jin. "Band-extended angular spectrum method for accurate diffraction calculation in a wide propagation range." Optics Letters 45.6 (2020): 1543-1546.

Parameters:

  • field
               Complex field (MxN).
    
  • k
               Wave number of a wave, see odak.wave.wavenumber for more.
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    

Returns:

  • result ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def band_extended_angular_spectrum(field, k, distance, dx, wavelength):
    """
    A definition to calculate bandextended angular spectrum based beam propagation. For more Zhang, Wenhui, Hao Zhang, and Guofan Jin. "Band-extended angular spectrum method for accurate diffraction calculation in a wide propagation range." Optics Letters 45.6 (2020): 1543-1546.

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    k                : odak.wave.wavenumber
                       Wave number of a wave, see odak.wave.wavenumber for more.
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.

    Returns
    -------
    result           : np.complex
                       Final complex field (MxN).
    """
    iflag = -1
    eps = 10**(-12)
    nv, nu = field.shape
    l = nu*dx
    x = np.linspace(-l/2, l/2, nu)
    y = np.linspace(-l/2, l/2, nv)
    X, Y = np.meshgrid(x, y)
    Z = X**2+Y**2
    fx = np.linspace(-1./2./dx, 1./2./dx, nu)
    fy = np.linspace(-1./2./dx, 1./2./dx, nv)
    FX, FY = np.meshgrid(fx, fy)
    K = nu/2/np.amax(fx)
    fcn = 1./2*(nu/wavelength/np.abs(distance))**0.5
    ss = np.abs(fcn)/np.amax(np.abs(fx))
    zc = nu*dx**2/wavelength
    if np.abs(distance) < zc:
        fxn = fx
        fyn = fy
    else:
        fxn = fx*ss
        fyn = fy*ss
    FXN, FYN = np.meshgrid(fxn, fyn)
    Hn = np.exp(1j*k*distance*(1-(FXN*wavelength)**2-(FYN*wavelength)**2)**0.5)
    X = X/np.amax(X)*np.pi
    Y = Y/np.amax(Y)*np.pi
    t_asmNUFT = nufft2(field, X*ss, Y*ss, sign=iflag, eps=eps)
    result = nuifft2(Hn*t_asmNUFT, X*ss, Y*ss, sign=-iflag, eps=eps)
    return result

band_limited_angular_spectrum(field, k, distance, dx, wavelength)

A definition to calculate bandlimited angular spectrum based beam propagation. For more Matsushima, Kyoji, and Tomoyoshi Shimobaba. "Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields." Optics express 17.22 (2009): 19662-19673.

Parameters:

  • field
               Complex field (MxN).
    
  • k
               Wave number of a wave, see odak.wave.wavenumber for more.
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    

Returns:

  • result ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def band_limited_angular_spectrum(field, k, distance, dx, wavelength):
    """
    A definition to calculate bandlimited angular spectrum based beam propagation. For more Matsushima, Kyoji, and Tomoyoshi Shimobaba. "Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields." Optics express 17.22 (2009): 19662-19673.

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    k                : odak.wave.wavenumber
                       Wave number of a wave, see odak.wave.wavenumber for more.
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.

    Returns
    -------
    result           : np.complex
                       Final complex field (MxN).
    """
    nv, nu = field.shape
    x = np.linspace(-nu/2*dx, nu/2*dx, nu)
    y = np.linspace(-nv/2*dx, nv/2*dx, nv)
    X, Y = np.meshgrid(x, y)
    Z = X**2+Y**2
    h = 1./(1j*wavelength*distance)*np.exp(1j*k*(distance+Z/2/distance))
    h = np.fft.fft2(np.fft.fftshift(h))*dx**2
    flimx = np.ceil(1/(((2*distance*(1./(nu)))**2+1)**0.5*wavelength))
    flimy = np.ceil(1/(((2*distance*(1./(nv)))**2+1)**0.5*wavelength))
    mask = np.zeros((nu, nv), dtype=np.complex64)
    mask = (np.abs(X) < flimx) & (np.abs(Y) < flimy)
    mask = set_amplitude(h, mask)
    U1 = np.fft.fft2(np.fft.fftshift(field))
    U2 = mask*U1
    result = np.fft.ifftshift(np.fft.ifft2(U2))
    return result

fraunhofer(field, k, distance, dx, wavelength)

A definition to calculate Fraunhofer based beam propagation.

Parameters:

  • field
               Complex field (MxN).
    
  • k
               Wave number of a wave, see odak.wave.wavenumber for more.
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    

Returns:

  • result ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def fraunhofer(field, k, distance, dx, wavelength):
    """
    A definition to calculate Fraunhofer based beam propagation.

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    k                : odak.wave.wavenumber
                       Wave number of a wave, see odak.wave.wavenumber for more.
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.

    Returns
    -------
    result           : np.complex
                       Final complex field (MxN).
    """
    nv, nu = field.shape
    l = nu*dx
    l2 = wavelength*distance/dx
    dx2 = wavelength*distance/l
    fx = np.linspace(-l2/2., l2/2., nu)
    fy = np.linspace(-l2/2., l2/2., nv)
    FX, FY = np.meshgrid(fx, fy)
    FZ = FX**2+FY**2
    c = np.exp(1j*k*distance)/(1j*wavelength*distance) * \
        np.exp(1j*k/(2*distance)*FZ)
    result = c*np.fft.ifftshift(np.fft.fft2(np.fft.fftshift(field)))*dx**2
    return result

fraunhofer_equal_size_adjust(field, distance, dx, wavelength)

A definition to match the physical size of the original field with the propagated field.

Parameters:

  • field
               Complex field (MxN).
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    

Returns:

  • new_field ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def fraunhofer_equal_size_adjust(field, distance, dx, wavelength):
    """
    A definition to match the physical size of the original field with the propagated field.

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.

    Returns
    -------
    new_field        : np.complex
                       Final complex field (MxN).
    """
    nv, nu = field.shape
    l1 = nu*dx
    l2 = wavelength*distance/dx
    m = l1/l2
    px = int(m*nu)
    py = int(m*nv)
    nx = int(field.shape[0]/2-px/2)
    ny = int(field.shape[1]/2-py/2)
    new_field = np.copy(field[nx:nx+px, ny:ny+py])
    return new_field

fraunhofer_inverse(field, k, distance, dx, wavelength)

A definition to calculate Inverse Fraunhofer based beam propagation.

Parameters:

  • field
               Complex field (MxN).
    
  • k
               Wave number of a wave, see odak.wave.wavenumber for more.
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    

Returns:

  • result ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def fraunhofer_inverse(field, k, distance, dx, wavelength):
    """
    A definition to calculate Inverse Fraunhofer based beam propagation.

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    k                : odak.wave.wavenumber
                       Wave number of a wave, see odak.wave.wavenumber for more.
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.

    Returns
    -------
    result           : np.complex
                       Final complex field (MxN).
    """
    distance = np.abs(distance)
    nv, nu = field.shape
    l = nu*dx
    l2 = wavelength*distance/dx
    dx2 = wavelength*distance/l
    fx = np.linspace(-l2/2., l2/2., nu)
    fy = np.linspace(-l2/2., l2/2., nv)
    FX, FY = np.meshgrid(fx, fy)
    FZ = FX**2+FY**2
    c = np.exp(1j*k*distance)/(1j*wavelength*distance) * \
        np.exp(1j*k/(2*distance)*FZ)
    result = np.fft.fftshift(np.fft.ifft2(np.fft.ifftshift(field/dx**2/c)))
    return result

gerchberg_saxton(field, n_iterations, distance, dx, wavelength, slm_range=6.28, propagation_type='IR Fresnel', initial_phase=None)

Definition to compute a hologram using an iterative method called Gerchberg-Saxton phase retrieval algorithm. For more on the method, see: Gerchberg, Ralph W. "A practical algorithm for the determination of phase from image and diffraction plane pictures." Optik 35 (1972): 237-246.

Parameters:

  • field
               Complex field (MxN).
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    
  • slm_range
               Typically this is equal to two pi. See odak.wave.adjust_phase_only_slm_range() for more.
    
  • propagation_type (str, default: 'IR Fresnel' ) –
               Type of the propagation (IR Fresnel, TR Fresnel, Fraunhofer).
    
  • initial_phase
               Phase to be added to the initial value.
    

Returns:

  • hologram ( complex ) –

    Calculated complex hologram.

  • reconstruction ( complex ) –

    Calculated reconstruction using calculated hologram.

Source code in odak/wave/classical.py
def gerchberg_saxton(field, n_iterations, distance, dx, wavelength, slm_range=6.28, propagation_type='IR Fresnel', initial_phase=None):
    """
    Definition to compute a hologram using an iterative method called Gerchberg-Saxton phase retrieval algorithm. For more on the method, see: Gerchberg, Ralph W. "A practical algorithm for the determination of phase from image and diffraction plane pictures." Optik 35 (1972): 237-246.

    Parameters
    ----------
    field            : np.complex64
                       Complex field (MxN).
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.
    slm_range        : float
                       Typically this is equal to two pi. See odak.wave.adjust_phase_only_slm_range() for more.
    propagation_type : str
                       Type of the propagation (IR Fresnel, TR Fresnel, Fraunhofer).
    initial_phase    : np.complex64
                       Phase to be added to the initial value.

    Returns
    -------
    hologram         : np.complex
                       Calculated complex hologram.
    reconstruction   : np.complex
                       Calculated reconstruction using calculated hologram. 
    """
    k = wavenumber(wavelength)
    target = calculate_amplitude(field)
    hologram = generate_complex_field(np.ones(field.shape), 0)
    hologram = zero_pad(hologram)
    if type(initial_phase) == type(None):
        hologram = add_random_phase(hologram)
    else:
        initial_phase = zero_pad(initial_phase)
        hologram = add_phase(hologram, initial_phase)
    center = [int(hologram.shape[0]/2.), int(hologram.shape[1]/2.)]
    orig_shape = [int(field.shape[0]/2.), int(field.shape[1]/2.)]
    for i in tqdm(range(n_iterations), leave=False):
        reconstruction = propagate_beam(
            hologram, k, distance, dx, wavelength, propagation_type)
        new_target = calculate_amplitude(reconstruction)
        new_target[
            center[0]-orig_shape[0]:center[0]+orig_shape[0],
            center[1]-orig_shape[1]:center[1]+orig_shape[1]
        ] = target
        reconstruction = generate_complex_field(
            new_target, calculate_phase(reconstruction))
        hologram = propagate_beam(
            reconstruction, k, -distance, dx, wavelength, propagation_type)
        hologram = generate_complex_field(1, calculate_phase(hologram))
        hologram = hologram[
            center[0]-orig_shape[0]:center[0]+orig_shape[0],
            center[1]-orig_shape[1]:center[1]+orig_shape[1],
        ]
        hologram = zero_pad(hologram)
    reconstruction = propagate_beam(
        hologram, k, distance, dx, wavelength, propagation_type)
    hologram = hologram[
        center[0]-orig_shape[0]:center[0]+orig_shape[0],
        center[1]-orig_shape[1]:center[1]+orig_shape[1]
    ]
    reconstruction = reconstruction[
        center[0]-orig_shape[0]:center[0]+orig_shape[0],
        center[1]-orig_shape[1]:center[1]+orig_shape[1]
    ]
    return hologram, reconstruction

gerchberg_saxton_3d(fields, n_iterations, distances, dx, wavelength, slm_range=6.28, propagation_type='IR Fresnel', initial_phase=None, target_type='no constraint', coefficients=None)

Definition to compute a multi plane hologram using an iterative method called Gerchberg-Saxton phase retrieval algorithm. For more on the method, see: Zhou, Pengcheng, et al. "30.4: Multi‐plane holographic display with a uniform 3D Gerchberg‐Saxton algorithm." SID Symposium Digest of Technical Papers. Vol. 46. No. 1. 2015.

Parameters:

  • fields
               Complex fields (MxN).
    
  • distances
               Propagation distances.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    
  • slm_range
               Typically this is equal to two pi. See odak.wave.adjust_phase_only_slm_range() for more.
    
  • propagation_type (str, default: 'IR Fresnel' ) –
               Type of the propagation (IR Fresnel, TR Fresnel, Fraunhofer).
    
  • initial_phase
               Phase to be added to the initial value.
    
  • target_type
               Target type. `No constraint` targets the input target as is. `Double constraint` follows the idea in this paper, which claims to suppress speckle: Chang, Chenliang, et al. "Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg–Saxton algorithm." Applied optics 54.23 (2015): 6994-7001.
    

Returns:

  • hologram ( complex ) –

    Calculated complex hologram.

Source code in odak/wave/classical.py
def gerchberg_saxton_3d(fields, n_iterations, distances, dx, wavelength, slm_range=6.28, propagation_type='IR Fresnel', initial_phase=None, target_type='no constraint', coefficients=None):
    """
    Definition to compute a multi plane hologram using an iterative method called Gerchberg-Saxton phase retrieval algorithm. For more on the method, see: Zhou, Pengcheng, et al. "30.4: Multi‐plane holographic display with a uniform 3D Gerchberg‐Saxton algorithm." SID Symposium Digest of Technical Papers. Vol. 46. No. 1. 2015.

    Parameters
    ----------
    fields           : np.complex64
                       Complex fields (MxN).
    distances        : list
                       Propagation distances.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.
    slm_range        : float
                       Typically this is equal to two pi. See odak.wave.adjust_phase_only_slm_range() for more.
    propagation_type : str
                       Type of the propagation (IR Fresnel, TR Fresnel, Fraunhofer).
    initial_phase    : np.complex64
                       Phase to be added to the initial value.
    target_type      : str
                       Target type. `No constraint` targets the input target as is. `Double constraint` follows the idea in this paper, which claims to suppress speckle: Chang, Chenliang, et al. "Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg–Saxton algorithm." Applied optics 54.23 (2015): 6994-7001. 

    Returns
    -------
    hologram         : np.complex
                       Calculated complex hologram.
    """
    k = wavenumber(wavelength)
    targets = calculate_amplitude(np.asarray(fields)).astype(np.float64)
    hologram = generate_complex_field(np.ones(targets[0].shape), 0)
    hologram = zero_pad(hologram)
    if type(initial_phase) == type(None):
        hologram = add_random_phase(hologram)
    else:
        initial_phase = zero_pad(initial_phase)
        hologram = add_phase(hologram, initial_phase)
    center = [int(hologram.shape[0]/2.), int(hologram.shape[1]/2.)]
    orig_shape = [int(fields[0].shape[0]/2.), int(fields[0].shape[1]/2.)]
    holograms = np.zeros(
        (len(distances), hologram.shape[0], hologram.shape[1]), dtype=np.complex64)
    for i in tqdm(range(n_iterations), leave=False):
        for distance_id in tqdm(range(len(distances)), leave=False):
            distance = distances[distance_id]
            reconstruction = propagate_beam(
                hologram, k, distance, dx, wavelength, propagation_type)
            if target_type == 'double constraint':
                if type(coefficients) == type(None):
                    raise Exception(
                        "Provide coeeficients of alpha,beta and gamma for double constraint.")
                alpha = coefficients[0]
                beta = coefficients[1]
                gamma = coefficients[2]
                target_current = 2*alpha * \
                    np.copy(targets[distance_id])-beta * \
                    calculate_amplitude(reconstruction)
                target_current[target_current == 0] = gamma * \
                    np.abs(reconstruction[target_current == 0])
            elif target_type == 'no constraint':
                target_current = np.abs(targets[distance_id])
            new_target = calculate_amplitude(reconstruction)
            new_target[
                center[0]-orig_shape[0]:center[0]+orig_shape[0],
                center[1]-orig_shape[1]:center[1]+orig_shape[1]
            ] = target_current
            reconstruction = generate_complex_field(
                new_target, calculate_phase(reconstruction))
            hologram_layer = propagate_beam(
                reconstruction, k, -distance, dx, wavelength, propagation_type)
            hologram_layer = generate_complex_field(
                1., calculate_phase(hologram_layer))
            hologram_layer = hologram_layer[
                center[0]-orig_shape[0]:center[0]+orig_shape[0],
                center[1]-orig_shape[1]:center[1]+orig_shape[1]
            ]
            hologram_layer = zero_pad(hologram_layer)
            holograms[distance_id] = hologram_layer
        hologram = np.sum(holograms, axis=0)
    hologram = hologram[
        center[0]-orig_shape[0]:center[0]+orig_shape[0],
        center[1]-orig_shape[1]:center[1]+orig_shape[1]
    ]
    return hologram

impulse_response_fresnel(field, k, distance, dx, wavelength)

A definition to calculate impulse response based Fresnel approximation for beam propagation.

Parameters:

  • field
               Complex field (MxN).
    
  • k
               Wave number of a wave, see odak.wave.wavenumber for more.
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    

Returns:

  • result ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def impulse_response_fresnel(field, k, distance, dx, wavelength):
    """
    A definition to calculate impulse response based Fresnel approximation for beam propagation.

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    k                : odak.wave.wavenumber
                       Wave number of a wave, see odak.wave.wavenumber for more.
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.

    Returns
    -------
    result           : np.complex
                       Final complex field (MxN).

    """
    nv, nu = field.shape
    x = np.linspace(-nu / 2 * dx, nu / 2 * dx, nu)
    y = np.linspace(-nv / 2 * dx, nv / 2 * dx, nv)
    X, Y = np.meshgrid(x, y)
    h = 1. / (1j * wavelength * distance) * np.exp(1j * k / (2 * distance) * (X ** 2 + Y ** 2))
    H = np.fft.fft2(np.fft.fftshift(h))
    U1 = np.fft.fft2(np.fft.fftshift(field))
    U2 = H * U1
    result = np.fft.ifftshift(np.fft.ifft2(U2))
    result = np.roll(result, shift = (1, 1), axis = (0, 1))
    return result

propagate_beam(field, k, distance, dx, wavelength, propagation_type='IR Fresnel')

Definitions for Fresnel Impulse Response (IR), Angular Spectrum (AS), Bandlimited Angular Spectrum (BAS), Fresnel Transfer Function (TF), Fraunhofer diffraction in accordence with "Computational Fourier Optics" by David Vuelz. For more on Bandlimited Fresnel impulse response also known as Bandlimited Angular Spectrum method see "Band-limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields".

Parameters:

  • field
               Complex field (MxN).
    
  • k
               Wave number of a wave, see odak.wave.wavenumber for more.
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    
  • propagation_type (str, default: 'IR Fresnel' ) –
               Type of the propagation (IR Fresnel, Angular Spectrum, Bandlimited Angular Spectrum, TR Fresnel, Fraunhofer).
    

Returns:

  • result ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def propagate_beam(field, k, distance, dx, wavelength, propagation_type='IR Fresnel'):
    """
    Definitions for Fresnel Impulse Response (IR), Angular Spectrum (AS), Bandlimited Angular Spectrum (BAS), Fresnel Transfer Function (TF), Fraunhofer diffraction in accordence with "Computational Fourier Optics" by David Vuelz. For more on Bandlimited Fresnel impulse response also known as Bandlimited Angular Spectrum method see "Band-limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields".

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    k                : odak.wave.wavenumber
                       Wave number of a wave, see odak.wave.wavenumber for more.
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.
    propagation_type : str
                       Type of the propagation (IR Fresnel, Angular Spectrum, Bandlimited Angular Spectrum, TR Fresnel, Fraunhofer).

    Returns
    -------
    result           : np.complex
                       Final complex field (MxN).
    """
    if propagation_type == 'Rayleigh-Sommerfeld':
        result = rayleigh_sommerfeld(field, k, distance, dx, wavelength)
    elif propagation_type == 'Angular Spectrum':
        result = angular_spectrum(field, k, distance, dx, wavelength)
    elif propagation_type == 'Impulse Response Fresnel':
        result = impulse_response_fresnel(field, k, distance, dx, wavelength)
    elif propagation_type == 'Bandlimited Angular Spectrum':
        result = band_limited_angular_spectrum(
            field, k, distance, dx, wavelength)
    elif propagation_type == 'Bandextended Angular Spectrum':
        result = band_extended_angular_spectrum(
            field, k, distance, dx, wavelength)
    elif propagation_type == 'Adaptive Sampling Angular Spectrum':
        result = adaptive_sampling_angular_spectrum(
            field, k, distance, dx, wavelength)
    elif propagation_type == 'Transfer Function Fresnel':
        result = transfer_function_fresnel(field, k, distance, dx, wavelength)
    elif propagation_type == 'Fraunhofer':
        result = fraunhofer(field, k, distance, dx, wavelength)
    elif propagation_type == 'Fraunhofer Inverse':
        result = fraunhofer_inverse(field, k, distance, dx, wavelength)
    else:
        raise Exception("Unknown propagation type selected.")
    return result

rayleigh_sommerfeld(field, k, distance, dx, wavelength)

Definition to compute beam propagation using Rayleigh-Sommerfeld's diffraction formula (Huygens-Fresnel Principle). For more see Section 3.5.2 in Goodman, Joseph W. Introduction to Fourier optics. Roberts and Company Publishers, 2005.

Parameters:

  • field
               Complex field (MxN).
    
  • k
               Wave number of a wave, see odak.wave.wavenumber for more.
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    

Returns:

  • result ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def rayleigh_sommerfeld(field, k, distance, dx, wavelength):
    """
    Definition to compute beam propagation using Rayleigh-Sommerfeld's diffraction formula (Huygens-Fresnel Principle). For more see Section 3.5.2 in Goodman, Joseph W. Introduction to Fourier optics. Roberts and Company Publishers, 2005.

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    k                : odak.wave.wavenumber
                       Wave number of a wave, see odak.wave.wavenumber for more.
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.

    Returns
    -------
    result           : np.complex
                       Final complex field (MxN).
    """
    nv, nu = field.shape
    x = np.linspace(-nv * dx / 2, nv * dx / 2, nv)
    y = np.linspace(-nu * dx / 2, nu * dx / 2, nu)
    X, Y = np.meshgrid(x, y)
    Z = X ** 2 + Y ** 2
    result = np.zeros(field.shape, dtype=np.complex64)
    direction = int(distance/np.abs(distance))
    for i in range(nu):
        for j in range(nv):
            if field[i, j] != 0:
                r01 = np.sqrt(distance ** 2 + (X - X[i, j]) ** 2 + (Y - Y[i, j]) ** 2) * direction
                cosnr01 = np.cos(distance / r01)
                result += field[i, j] * np.exp(1j * k * r01) / r01 * cosnr01
    result *= 1. / (1j * wavelength)
    return result

transfer_function_fresnel(field, k, distance, dx, wavelength)

A definition to calculate convolution based Fresnel approximation for beam propagation.

Parameters:

  • field
               Complex field (MxN).
    
  • k
               Wave number of a wave, see odak.wave.wavenumber for more.
    
  • distance
               Propagation distance.
    
  • dx
               Size of one single pixel in the field grid (in meters).
    
  • wavelength
               Wavelength of the electric field.
    

Returns:

  • result ( complex ) –

    Final complex field (MxN).

Source code in odak/wave/classical.py
def transfer_function_fresnel(field, k, distance, dx, wavelength):
    """
    A definition to calculate convolution based Fresnel approximation for beam propagation.

    Parameters
    ----------
    field            : np.complex
                       Complex field (MxN).
    k                : odak.wave.wavenumber
                       Wave number of a wave, see odak.wave.wavenumber for more.
    distance         : float
                       Propagation distance.
    dx               : float
                       Size of one single pixel in the field grid (in meters).
    wavelength       : float
                       Wavelength of the electric field.

    Returns
    -------
    result           : np.complex
                       Final complex field (MxN).

    """
    nv, nu = field.shape
    fx = np.linspace(-1. / 2. /dx, 1. /2. /dx, nu)
    fy = np.linspace(-1. / 2. /dx, 1. /2. /dx, nv)
    FX, FY = np.meshgrid(fx, fy)
    H = np.exp(1j * k * distance * (1 - (FX * wavelength) ** 2 - (FY * wavelength) ** 2) ** 0.5)
    U1 = np.fft.fftshift(np.fft.fft2(np.fft.fftshift(field)))
    U2 = H * U1
    result = np.fft.ifftshift(np.fft.ifft2(np.fft.ifftshift(U2)))
    return result

double_convergence(nx, ny, k, r, dx)

A definition to generate initial phase for a Gerchberg-Saxton method. For more details consult Sun, Peng, et al. "Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm." Optics express 26.8 (2018): 10140-10151.

Parameters:

  • nx
         Size of the output along X.
    
  • ny
         Size of the output along Y.
    
  • k
         See odak.wave.wavenumber for more.
    
  • r
         The distance between location of a light source and an image plane.
    
  • dx
         Pixel pitch.
    

Returns:

  • function ( ndarray ) –

    Generated phase pattern for a Gerchberg-Saxton method.

Source code in odak/wave/lens.py
def double_convergence(nx, ny, k, r, dx):
    """
    A definition to generate initial phase for a Gerchberg-Saxton method. For more details consult Sun, Peng, et al. "Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm." Optics express 26.8 (2018): 10140-10151.

    Parameters
    ----------
    nx         : int
                 Size of the output along X.
    ny         : int
                 Size of the output along Y.
    k          : odak.wave.wavenumber
                 See odak.wave.wavenumber for more.
    r          : float
                 The distance between location of a light source and an image plane.
    dx         : float
                 Pixel pitch.

    Returns
    -------
    function   : ndarray
                 Generated phase pattern for a Gerchberg-Saxton method.
    """
    size = [ny, nx]
    x = np.linspace(-size[0]*dx/2, size[0]*dx/2, size[0])
    y = np.linspace(-size[1]*dx/2, size[1]*dx/2, size[1])
    X, Y = np.meshgrid(x, y)
    Z = X**2+Y**2
    w = np.exp(1j*k*Z/r)
    return w

linear_grating(nx, ny, every=2, add=3.14, axis='x')

A definition to generate a linear grating.

Parameters:

  • nx
         Size of the output along X.
    
  • ny
         Size of the output along Y.
    
  • every
         Add the add value at every given number.
    
  • add
         Angle to be added.
    
  • axis
         Axis eiter X,Y or both.
    

Returns:

  • field ( ndarray ) –

    Linear grating term.

Source code in odak/wave/lens.py
def linear_grating(nx, ny, every=2, add=3.14, axis='x'):
    """
    A definition to generate a linear grating.

    Parameters
    ----------
    nx         : int
                 Size of the output along X.
    ny         : int
                 Size of the output along Y.
    every      : int
                 Add the add value at every given number.
    add        : float
                 Angle to be added.
    axis       : string
                 Axis eiter X,Y or both.

    Returns
    -------
    field      : ndarray
                 Linear grating term.
    """
    grating = np.zeros((nx, ny), dtype=np.complex64)
    if axis == 'x':
        grating[::every, :] = np.exp(1j*add)
    if axis == 'y':
        grating[:, ::every] = np.exp(1j*add)
    if axis == 'xy':
        checker = np.indices((nx, ny)).sum(axis=0) % every
        checker += 1
        checker = checker % 2
        grating = np.exp(1j*checker*add)
    return grating

prism_phase_function(nx, ny, k, angle, dx=0.001, axis='x')

A definition to generate 2D phase function that represents a prism. See Goodman's Introduction to Fourier Optics book for more.

Parameters:

  • nx
         Size of the output along X.
    
  • ny
         Size of the output along Y.
    
  • k
         See odak.wave.wavenumber for more.
    
  • angle
         Tilt angle of the prism in degrees.
    
  • dx
         Pixel pitch.
    
  • axis
         Axis of the prism.
    

Returns:

  • prism ( ndarray ) –

    Generated phase function for a prism.

Source code in odak/wave/lens.py
def prism_phase_function(nx, ny, k, angle, dx=0.001, axis='x'):
    """
    A definition to generate 2D phase function that represents a prism. See Goodman's Introduction to Fourier Optics book for more.

    Parameters
    ----------
    nx         : int
                 Size of the output along X.
    ny         : int
                 Size of the output along Y.
    k          : odak.wave.wavenumber
                 See odak.wave.wavenumber for more.
    angle      : float
                 Tilt angle of the prism in degrees.
    dx         : float
                 Pixel pitch.
    axis       : str
                 Axis of the prism.

    Returns
    -------
    prism      : ndarray
                 Generated phase function for a prism.
    """
    angle = np.radians(angle)
    size = [ny, nx]
    x = np.linspace(-size[0]*dx/2, size[0]*dx/2, size[0])
    y = np.linspace(-size[1]*dx/2, size[1]*dx/2, size[1])
    X, Y = np.meshgrid(x, y)
    if axis == 'y':
        prism = np.exp(-1j*k*np.sin(angle)*Y)
    elif axis == 'x':
        prism = np.exp(-1j*k*np.sin(angle)*X)
    return prism

quadratic_phase_function(nx, ny, k, focal=0.4, dx=0.001, offset=[0, 0])

A definition to generate 2D quadratic phase function, which is typically use to represent lenses.

Parameters:

  • nx
         Size of the output along X.
    
  • ny
         Size of the output along Y.
    
  • k
         See odak.wave.wavenumber for more.
    
  • focal
         Focal length of the quadratic phase function.
    
  • dx
         Pixel pitch.
    
  • offset
         Deviation from the center along X and Y axes.
    

Returns:

  • function ( ndarray ) –

    Generated quadratic phase function.

Source code in odak/wave/lens.py
def quadratic_phase_function(nx, ny, k, focal=0.4, dx=0.001, offset=[0, 0]):
    """ 
    A definition to generate 2D quadratic phase function, which is typically use to represent lenses.

    Parameters
    ----------
    nx         : int
                 Size of the output along X.
    ny         : int
                 Size of the output along Y.
    k          : odak.wave.wavenumber
                 See odak.wave.wavenumber for more.
    focal      : float
                 Focal length of the quadratic phase function.
    dx         : float
                 Pixel pitch.
    offset     : list
                 Deviation from the center along X and Y axes.

    Returns
    -------
    function   : ndarray
                 Generated quadratic phase function.
    """
    size = [nx, ny]
    x = np.linspace(-size[0]*dx/2, size[0]*dx/2, size[0])-offset[1]*dx
    y = np.linspace(-size[1]*dx/2, size[1]*dx/2, size[1])-offset[0]*dx
    X, Y = np.meshgrid(x, y)
    Z = X**2+Y**2
    qwf = np.exp(1j*k*0.5*np.sin(Z/focal))
    return qwf

calculate_amplitude(field)

Definition to calculate amplitude of a single or multiple given electric field(s).

Parameters:

  • field
           Electric fields or an electric field.
    

Returns:

  • amplitude ( float ) –

    Amplitude or amplitudes of electric field(s).

Source code in odak/wave/utils.py
def calculate_amplitude(field):
    """ 
    Definition to calculate amplitude of a single or multiple given electric field(s).

    Parameters
    ----------
    field        : ndarray.complex or complex
                   Electric fields or an electric field.

    Returns
    -------
    amplitude    : float
                   Amplitude or amplitudes of electric field(s).
    """
    amplitude = np.abs(field)
    return amplitude

calculate_phase(field, deg=False)

Definition to calculate phase of a single or multiple given electric field(s).

Parameters:

  • field
           Electric fields or an electric field.
    
  • deg
           If set True, the angles will be returned in degrees.
    

Returns:

  • phase ( float ) –

    Phase or phases of electric field(s) in radians.

Source code in odak/wave/utils.py
def calculate_phase(field, deg=False):
    """ 
    Definition to calculate phase of a single or multiple given electric field(s).

    Parameters
    ----------
    field        : ndarray.complex or complex
                   Electric fields or an electric field.
    deg          : bool
                   If set True, the angles will be returned in degrees.

    Returns
    -------
    phase        : float
                   Phase or phases of electric field(s) in radians.
    """
    phase = np.angle(field)
    if deg == True:
        phase *= 180./np.pi
    return phase

electric_field_per_plane_wave(amplitude, opd, k, phase=0, w=0, t=0)

Definition to return state of a plane wave at a particular distance and time.

Parameters:

  • amplitude
           Amplitude of a wave.
    
  • opd
           Optical path difference in mm.
    
  • k
           Wave number of a wave, see odak.wave.parameters.wavenumber for more.
    
  • phase
           Initial phase of a wave.
    
  • w
           Rotation speed of a wave, see odak.wave.parameters.rotationspeed for more.
    
  • t
           Time in seconds.
    

Returns:

  • field ( complex ) –

    A complex number that provides the resultant field in the complex form A*e^(j(wt+phi)).

Source code in odak/wave/vector.py
def electric_field_per_plane_wave(amplitude, opd, k, phase=0, w=0, t=0):
    """
    Definition to return state of a plane wave at a particular distance and time.

    Parameters
    ----------
    amplitude    : float
                   Amplitude of a wave.
    opd          : float
                   Optical path difference in mm.
    k            : float
                   Wave number of a wave, see odak.wave.parameters.wavenumber for more.
    phase        : float
                   Initial phase of a wave.
    w            : float
                   Rotation speed of a wave, see odak.wave.parameters.rotationspeed for more.
    t            : float
                   Time in seconds.

    Returns
    -------
    field        : complex
                   A complex number that provides the resultant field in the complex form A*e^(j(wt+phi)).
    """
    field = amplitude*np.exp(1j*(-w*t+opd*k+phase))/opd**2
    return field

propagate_field(points0, points1, field0, wave_number, direction=1)

Definition to propagate a field from points to an another points in space: propagate a given array of spherical sources to given set of points in space.

Parameters:

  • points0
            Start points (i.e. odak.tools.grid_sample).
    
  • points1
            End points (ie. odak.tools.grid_sample).
    
  • field0
            Field for given starting points.
    
  • wave_number
            Wave number of a wave, see odak.wave.wavenumber for more.
    
  • direction
            For propagating in forward direction set as 1, otherwise -1.
    

Returns:

  • field1 ( ndarray ) –

    Field for given end points.

Source code in odak/wave/vector.py
def propagate_field(points0, points1, field0, wave_number, direction=1):
    """
    Definition to propagate a field from points to an another points in space: propagate a given array of spherical sources to given set of points in space.

    Parameters
    ----------
    points0       : ndarray
                    Start points (i.e. odak.tools.grid_sample).
    points1       : ndarray
                    End points (ie. odak.tools.grid_sample).
    field0        : ndarray
                    Field for given starting points.
    wave_number   : float
                    Wave number of a wave, see odak.wave.wavenumber for more.
    direction     : float
                    For propagating in forward direction set as 1, otherwise -1.

    Returns
    -------
    field1        : ndarray
                    Field for given end points.
    """
    field1 = np.zeros(points1.shape[0], dtype=np.complex64)
    for point_id in range(points0.shape[0]):
        point = points0[point_id]
        distances = distance_between_two_points(
            point,
            points1
        )
        field1 += electric_field_per_plane_wave(
            calculate_amplitude(field0[point_id]),
            distances*direction,
            wave_number,
            phase=calculate_phase(field0[point_id])
        )
    return field1

propagate_plane_waves(field, opd, k, w=0, t=0)

Definition to propagate a field representing a plane wave at a particular distance and time.

Parameters:

  • field
           Complex field.
    
  • opd
           Optical path difference in mm.
    
  • k
           Wave number of a wave, see odak.wave.parameters.wavenumber for more.
    
  • w
           Rotation speed of a wave, see odak.wave.parameters.rotationspeed for more.
    
  • t
           Time in seconds.
    

Returns:

  • new_field ( complex ) –

    A complex number that provides the resultant field in the complex form A*e^(j(wt+phi)).

Source code in odak/wave/vector.py
def propagate_plane_waves(field, opd, k, w=0, t=0):
    """
    Definition to propagate a field representing a plane wave at a particular distance and time.

    Parameters
    ----------
    field        : complex
                   Complex field.
    opd          : float
                   Optical path difference in mm.
    k            : float
                   Wave number of a wave, see odak.wave.parameters.wavenumber for more.
    w            : float
                   Rotation speed of a wave, see odak.wave.parameters.rotationspeed for more.
    t            : float
                   Time in seconds.

    Returns
    -------
    new_field     : complex
                    A complex number that provides the resultant field in the complex form A*e^(j(wt+phi)).
    """
    new_field = field*np.exp(1j*(-w*t+opd*k))/opd**2
    return new_field