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Abstract

Multi-color holograms rely on simultaneous illumination from multiple light sources. These
multi-color holograms could utilize light sources better than conventional single-color holo-
grams and can improve the dynamic range of holographic displays. In this letter, we introduce
AutoColor , the first learned method for estimating the optimal light source powers required
for illuminating multi-color holograms. For this purpose, we establish the first multi-color
hologram dataset using synthetic images and their depth information. We generate these syn-
thetic images using a trending pipeline combining generative, large language, and monocular
depth estimation models. Finally, we train our learned model using our dataset and experi-
mentally demonstrate that AutoColor significantly decreases the number of steps required
to optimize multi-color holograms from > 1000 to 70 iteration steps without compromising
image quality.
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1 Introduction

Computer-Generated Holography (CGH) is an emerging technology for next-generation displays, including
virtual reality headsets, augmented reality glasses [1], and 3D displays [2]. Through CGH, holographic displays
promise to reproduce realistic images by reconstructing accurate light fields [3, 4] or perceptually accurate
representations [5, 6]. A standard holographic display comprises a phase-only Spatial Light Modulator
(SLM) and multiple light sources that helps generate a full-color image. Typically, the phase-only SLM
plays a single-color hologram for each color channel time-sequentially. Meanwhile, each corresponding light
source for each color channel lits a presented single-color hologram. This way, Human Visual System (HVS)
integrates each color from these holograms, and users can observe full-color Three-Dimensional (3D) scenes
from holographic displays.

Recently, Chen et al. [7] optimized light source powers in single-color holograms using a camera-in-the-loop
approach to accurately represent color and brightness levels. Assuming light sources operate at their peak
intensities, standard single-color holograms are limited in their dynamic range, a set of brightness levels they
can represent. This dynamic range issue becomes apparent as each light source roughly operates one-third
of the time when representing a full-color image. A recent study proposes multi-color holograms [8] for
overcoming this issue. Their work co-optimizes multi-color holograms with their corresponding powers by

∗

Citation: Authors. Title. Pages.... DOI:000000/11111.

ar
X

iv
:2

3
0
5
.0

1
6
1
1
v
1
  
[c

s.
C

V
] 

 2
 M

ay
 2

0
2
3



Yicheng Zhan, Koray Kavaklı, Hakan Urey, Qi Sun and Kaan Akşit

each light source. While their study improves dynamic range and brightness up to ×1.8 than single-color
holograms, the co-optimization process requires many iterations (e.g. >1000 steps). Thus, multi-color
hologram optimization takes minutes, remarkably slower than a few seconds of single-color computations.

Figure 1: AutoColor light power estimation network structure. AutoColor learns to estimate powers
for each light source to illuminate multi-color holograms using our multi-color hologram dataset and a
permutation-invariant loss tailored for multi-color holograms.

This letter proposes the first learned method, AutoColor , to estimate the optimal light source powers for
multi-color holograms. AutoColor reduces the multi-color optimization in the previous study [8] from many
minutes to a couple of ten seconds. Firstly, AutoColor needs a dataset to adequately train a light source
powers estimation network. Today, high-quality hologram datasets [9, 10] exist but are strictly for single-color
holograms. The multi-color hologram dataset is not readily available in the literature. We create the first
multi-color hologram dataset using synthetic but photo-realistic images and their depth information. Secondly,
we develop a Convolutional Neural Network (CNN) architecture that consists of downsampling and convolution
operations to estimate light source powers from an input image. We train this CNN using our multi-color
hologram dataset. Finally, we show that our CNN significantly accelerates multi-color optimizations. We also
experimentally verified our findings in a holographic display prototype.

2 Methodology & Result

The schematic diagram of our learned method, AutoColor , is shown in Fig. 1. To achieve AutoColor , we first
generate a dataset of images with their depths, laser powers, and holograms. We leverage a Large Language
Model (LLM) GPT-4 [11] via its online interface ChatGPT to guide the generation diversity. Specifically, we
use the following prompt:

Authors: Using the diffusion model, I want to create a dataset covering various scenarios representing
objects, scenes, and lighting conditions. Please generate ten prompts and make them as detailed as you can.
Also, add extra prompts like: "detailed depict, a professional photo, hyperrealistic, full body, realistic, highly
detailed, sharp focus" to control its realistic extent. Use your imagination to make it as variant as possible.
Put these ten prompts into a list called prompt_list in Python 3.

Generating diverse datasets with one query is unfeasible due to GPT-4’s creative exhaustion. Thus, we
substitute keywords with various objects or nouns in a similar query structure in our pipeline. The language
model generates prompts with the following as an example:

LLM: "A bustling marketplace filled with vendors selling their colorful fruits, vegetables, and spices, with
customers haggling over prices. Capture the dynamic energy, vibrant colors, and diverse array of textures
and aromas. Include detailed depict, professional photo, hyperrealistic, full body, realistic, highly detailed,
and sharp focus."

We use those LLM-generated prompts to develop a large dataset of images locally using text-to-image
generation models, Stable Diffusion [12] (see GitHub:stability-ai/stablediffusion). Using the publicly available
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weights (v2-1_512-ema-pruned.ckpt) for the text-to-image generation model and using 12 GB memory, we
generate 8865 images with 512×512 resolutions. We then upsample these 8865 images to 2048×2048 resolutions
using a Generative Adversarial Network (GAN) based super-resolution network [13] (see GitHub:xinntao/Real-
ESRGAN). The upsampling process runs locally on an RTX 3090, consuming 4.7 GB memory using the
publicly available weights (RealESRGAN_x4plus.pth). To estimate the depth information for all the generated
images at 2048×2048 resolution, we rely on a monocular depth information network [14, 15] and their publicly
available weights (dpt_hybrid-midas-501f0c75.pt), consuming 35 GB memory on an NVIDIA A100 on a cloud
GPU cluster. We also downscale 8865 RGBD images with 1024× 1024 resolutions to reduce time and memory
consumption during the hologram generation step. Locally, we optimize multi-color holograms and their
light source powers using HoloHDR optimization pipeline [8] (see GitHub:complight/holohdr). To efficiently
manage our workload, we found it imperative to employ multiple GPUs, We convert all the RGB images
to multi-color holograms at ×1.8 brightness, 1024 × 1024 resolution, and 8µm pixel pitch. We target three
depth layers and 500 steps for each multi-color hologram, with the learning rate starting from 0.025 and
decaying to 0.005 (highly aggressive to coarse learning rates). The multi-color holograms are generated for
three target planes, which are on -0.5 cm, 0 cm, and 0.5 cm with respect to our SLM (hologram plane). Our
entire dataset generation consumes about ten days of computation using multiple GPUs.

Conventional single-color holograms rely on a field-sequential color method and use one single monochromatic
light source at a time. HVS fuses these single-color images into a full-color as these holograms are displayed at
rates well above Critical Flicker Fusion (CFF). Assuming that a holographic display has three monochromatic
light sources, each of them is optimized by solving the following equation,

ûp ← argmin
up

3

∑
p=1

L(∣eiup
∗ hp∣2, Ip), (1)

where p denotes the index of a color primary, up is the SLM phase, ûp is the optimized single-color hologram,
hp is the wavelength-dependent light transport kernel [16, 17], Ip is the target image intensity, ∗ denotes
the convolution operation, and L denotes any valid loss function that measures the difference between the
reconstruction and target. On the other hand, multi-color holograms use multiple monochromatic light
sources simultaneously. Assuming the total number of subframes to T = 3 like in the conventional single-color
holograms, multi-color hologram generation could be formulated as

ût, l̂(p,t) ← argmin
ut,l(p,t)
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Limage

, (2)

where l(t,p) represents the light source intensity for the p-th primary at the t-th subframe, λp denotes the
wavelength of the active primary, λpanchor

denotes the wavelength of the anchor primary, for which the nominal
value of the SLM phase is calibrated against (e.g. λpanchor

= 515 nm in our hardware prototype), and s
determines how bright a final image should be. For this study, we choose s = ×1.8, whereas single-color
hologram has lower brightness values with s = ×1.0. Specifically, a multi-color hologram optimization seeks
the optimal light source intensity, l (a 3 × 3 matrix for light sources and 3 subframes). Values in l are always
normalized between zero (complete switching) and one (the peak brightness level of a monochromatic light
source). If s > 1, l’s rows representing subframes will sum up to a value > 1 to match the demand of s
(code implementation at GitHub:complight/holohdr). For single-color holograms, l is a preset value that
corresponds to an identity matrix where only one monochromatic light source operates at each subframe.
Certainly, it does not meet the demand of s > 1 effectively as the l’s rows sum up to one and often yields
image degradation as described in [8]. In this work, we estimate l matrix to provide a faster convergence rate
in multi-color hologram optimizations.

Leveraging the dataset and the described multi-color optimizations, we develop AutoColor , a light source
power estimation CNN using PyTorch [18] and Odak [19], where we estimate various l from input images.
AutoColor includes downsampling blocks followed by a final convolutional layer, as shown in Fig. 1. Each
downsampling block has a cascade of 2D convolution layers with a kernel size of three and a channel size
of twenty-four. Each convolutional layer in a downsampling block is followed by batch normalization and
nonlinear activation function. The last layer of each block is a downsampling operation. Our CNN contains
three downsampling blocks, starting from original image resolution to downsampling to 100 × 100, 10 × 10,
and 3 × 3 in stages. Using an RTX 2080 Ti, we train our CNN for 40 epochs, starting with a learning rate
of 0.002, and declining to 0.0005. Our training with an Adam solver includes all the images and optimized
laser powers of our multi-color holograms from our dataset. We include regularization terms for various
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considerations. (1) The rows of l provide light source power for individual frames. Their ordering, however,
shall not alter the reconstructed imagery. Therefore, the predicted laser light source power is regularized for
order invariance. (2) The estimated values shall be bounded with a physically plausible range [0, 1]. The
regularization loss term is constructed as follows,

L = argmin
m∈{k!}

∥mlest − lopt∥22
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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Lnormalize

. (3)

Here, Linvariant and Lnormalize are loss functions to encourage frame-invariance and bounding to [0, 1].
Meanwhile, k represents frame permutations (m for each of them), lest represents light source power estimation,
and laserIntensityopt represents the corresponding optimized power from our dataset. Note that the way
we choose the minimum loss among permutations is a vital component of our training, it is similar to
permutation-invariant loss functions in speech separation literature [20]. After the training converges, we use
the estimated light source powers from the CNN and optimize multi-color holograms using [8]. We observe
that the paradigm significantly improved computational efficiency by reducing the optimization to 70 steps,
compared with the 1000 steps from prior work [8].

As a quantitative evalutation, we developed a holographic display hardware prototype following [8]. Our
prototype uses a LASOS MCS4 multi-wavelength laser (473, 515, and 639 nm) with controlled power levels
from two ESP32-WROOM-32D modules. A pinhole aperture, Thorlabs SM1D12, was placed in front of
the fiber to limit the numerical aperture of the diverging beams. Thorlabs LPVISE100-A linear polarizer
placed after the pinhole aperture allows a polarization state aligned with the SLMs fast axis for light beams.
These linearly polarized beams get modulated with our phase-only SLM, Holoeye Pluto-VIS (1080 × 1920
resolution and 8µm pixel pitch), and arrive at a 4f imaging system composed of two 50 mm focal length
achromatic doublet lenses and a pinhole aperture (Thorlabs AC254-050-A and SM1D12). We capture the
image reconstructions with a Ximea MC245CG-SY camera, located on an X-stage (Thorlabs PT1/M range:
0-25 mm, precision: 0.01 mm). The prototype is configured as an off-axis imaging system. A linear grating
term was applied to phase holograms to generate images at the half-diffraction order location. We calculate
the linearly grated phase hologram, O′h,

O′h(x, y) = {e−j(φ(x,y)+π) if y = odd
e−jφ(x,y) if y = even

(4)

where φ represents the original phase values of Oh at the x and y pixel locations. Our quantitative evaulation
is summarized in Fig. 2.

3 Conclusion & Future Work

In the future, we envision to advance the research on adaptability and energy efficiency. Our CNN is
trained for a fixed multi-color hologram generation routine, where s = ×1.8. The architecture may be further
improved such that scale conditions the estimated light source powers. This way, the other s values could be
requested from the CNN. To do so, the multi-color hologram dataset shall be extended to include varied s
values. Similarly, the CNN structure estimates optimal light source powers, instead of the minimal energy
consumption. In fact, power savings could be realized if a gaze tracker is introduced in the system and target
colors are chosen following HVS characteristics in foveal and peripheral regions similar to [21, 22].

In conclusion, we show that multi-color hologram optimizations could be achieved with significantly fewer
steps. To this aim, we develop a light power estimation network, AutoColor , powered by our first multi-color
hologram generation pipeline and dataset. The findings are further validated with an experimental analysis.
We hope AutoColor to pave the way toward an exciting research frontier for future holograms with wide
dynamic ranges at interactive rates.
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Figure 2: Photographs showing AutoColor generating x1.8 times brighter images in lesser steps than
HoloHDR. Experimental results show that AutoColor achieves high-fidelity visuals using only 70 steps,
whereas HoloHDR requires 1000 steps for similar quality and fails to produce correct color information in 70
steps. Images optimized with 70 steps using AutoColor provides similar quantitative image metrics (see the
inset numbers) compared with the images generated with 1000 steps in HoloHDR. AutoColor applies to both
2D images (first and second row) and 3D images (third row). (Source link: Github:complight/image, 80
ms exposure).
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Data availability. All data needed to evaluate the conclusions in the manuscript are provided in the
manuscript. Source code and dataset can be downloaded from GitHub:complight/autocolor. Additional data
related to this paper may be kindly requested from the authors.
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