
Beyond Blur: Real-time Ventral Metamers for Foveated Rendering

DAVID R. WALTON∗, RAFAEL KUFFNER DOS ANJOS∗, SEBASTIAN FRISTON, DAVID SWAPP, KAAN
AKŞIT, ANTHONY STEED, and TOBIAS RITSCHEL, University College London, UK

Ground truth Acuity-only [0.5 ms] Metamer (Ours) [0.7 ms]

Fig. 1. Three images to be compared at a viewing distance of 30 cm in A4 print by fixating (foveating) on the location indicated by the arrows. The first image

is a reference (le�). The second image is simulating peripheral vision using a Gaussian blur with bandwidth proportional to acuity (middle). Third, our

real-time ventral metamer where the periphery matches the reference in terms of statistics of multi-orientation and multi-scale feature activations (right).

Both can be computed in real-time frame rates, yet the metamer appears much closer to the reference. Timing for 512×512 on a Nvidia 2080 GPU.

To peripheral vision, a pair of physically different images can look the same.

Such pairs are metamers relative to each other, just as physically-different

spectra of light are perceived as the same color. We propose a real-time

method to compute such ventral metamers for foveated rendering where,

in particular for near-eye displays, the largest part of the framebuffer maps

to the periphery. This improves in quality over state-of-the-art foveation

methods which blur the periphery. Work in Vision Science has established

how peripheral stimuli are ventral metamers if their statistics are similar.

Existing methods, however, require a costly optimization process to find

such metamers. To this end, we propose a novel type of statistics particularly

well-suited for practical real-time rendering: smooth moments of steerable

filter responses. These can be extracted from images in time constant in

the number of pixels and in parallel over all pixels using a GPU. Further,

we show that they can be compressed effectively and transmitted at low

bandwidth. Finally, computing realizations of those statistics can again be

performed in constant time and in parallel. This enables a new level of quality

for foveated applications such as such as remote rendering, level-of-detail

and Monte-Carlo denoising. In a user study, we finally show how human

task performance increases and foveation artifacts are less suspicious, when

using our method compared to common blurring.

CCS Concepts: •Computingmethodologies→ Perception; Image com-

pression; Ray tracing.

Additional Key Words and Phrases: Foveated Rendering; Head-mounted

displays; Texture synthesis; Human Visual perception

1 INTRODUCTION

In order to create a rich visual experience Virtual Reality (VR) often

employs Near-Eye Displays (NEDs) or light projection systems such

as VR caves to cover a large proportion of the user’s visual field.

∗Joint First Author

Authors’ address: David R. Walton; Rafael Kuffner dos Anjos; Sebastian Friston; David
Swapp; Kaan Akşit; Anthony Steed; Tobias Ritschel, University College London, UK.

Doing so at a high enough resolution to match the human vision

in the fovea requires substantial compute and bandwidth resources.

Spectra

HVS

Images
HVS

Fig. 2. Classic color (top) and

ventral (bo�om) metamers.

A screen size of 4,000 pix-

els or higher would be re-

quired if a traditional screen

and rendering pipeline were to

be used. The Human Visual Sys-

tem (HVS) however, only re-

solves fine spatial details in its

fovea but not in the periphery

[Rosenholtz 2016; Strasburger

et al. 2011]. The idea of Foveated

Rendering [Albert et al. 2017;

Friston et al. 2019; Guenter et al.

2012; Meng et al. 2018; Patney

et al. 2016] is to focus compute

effort to the fovea. Typically, foveated rendering shows a band-

limited (i.e., blurry) version of the image in its periphery [Guenter

et al. 2012; Patney et al. 2016], computed from fewer samples. Un-

fortunately, such blur can be perceived as unnatural and does not

match well to what the HVS actually perceives: the periphery is not

just blurry [Bouma 1970; Rosenholtz 2016].

In this work, we seek to improve upon the fidelity of blurring,

while retaining its efficiency. We propose a real-time method to

compute images that appear identical to other images when ob-

served in the periphery. Such images are called Ventral Metamers

[Freeman and Simoncelli 2011] (Fig. 2). A stimulus is a metamer to

another one if they are physically different but perceived identically.

A well-known instance of metamerism is that different color spectra

can map to the same color perception [Fairchild 2013]. But what is

a good way to realize a peripheral metamer of another image?

48:2 • David R. Walton, Rafael Kuffner dos Anjos, Sebastian Friston, David Swapp, Kaan Akşit, Anthony Steed, and Tobias Ritschel

The Vision Science literature has shown how an image is a pe-

ripheral metamer to another one if certain image statistics in their

periphery are identical. Statistics here refers to “soft counting”, i.e.,

how often a feature, such as an edge, appears in a spatial pooling

region of the visual field. Many different statistics, features and

pooling regions have been proposed, leading to different models

of peripheral metamerism in the literature [Greenwood et al. 2009;

Rosenholtz et al. 2012; Schmid et al. 2009]. These models aim at

understanding physiological processes and hence are often slow

to compute, difficult to implement or hard to control. We aim for

a simple-to-implement model with computational efficiency as re-

quired in real-time rendering. The key difficulty is the choice of

statistics that match human perception.

We propose a form of statistics that is suitable for real-time analy-

sis and synthesis of metamers: smooth steerable moments. These are

applied in three steps: First, the method can analyze an input image

in constant per-pixel time (O(1)). This is performed in parallel over

all pixels. This step in inspired by variance shadow maps [Donnelly

and Lauritzen 2006]. Second, the resulting statistics are processed,

compressed and transmitted, depending on the application. Finally,

random realizations of the metamer in accordance to the statistics

can be generated, again in O(1) time, by a process inspired by classic

texture synthesis [Heeger and Bergen 1995].

After devising our theory, wewill show a system that canmetamer-

ize any (stereo) image stream in real-time for VR. Our idea further

enables a new level of peripheral quality which we demonstrate

for three examples. First, foveated metameric image compression

where the peripheral statistics are computed at a server and trans-

mitted to a client that generates a metamer. While classic foveated

compression is blurry in the periphery, our approach results in cor-

rect statistics. Second, foveated metameric textures where instead

of storing means in MIP maps, we store the moments, allowing the

generation of plausible peripheral texture details at low bandwidth.

Third, foveated Monte-Carlo denoising, where a Convolutional Neu-

ral Network (CNN) maps noisy images to their reference statistics

in the periphery instead of attempting the harder task of generating

a correct noise-free image that cannot be perceived in the first place.

We evaluate how metamers generated with our method are per-

ceived by human observers in a set of perceptual studies to confirm

that (1) it improves task performance when recognizing patterns (2)

it is preferred over other methods and (3) participants are more likely

to classify an image metamerized using our method as consistent

than images produced using blur.

2 PREVIOUS WORK

The aim of our work is to improve foveated rendering (Sec. 2.1) using

findings from Vision Science on peripheral processing (Sec. 2.2) that

relate to texture perception and synthesis (Sec. 2.3). We review the

relevant work in the literature accordingly. Closely related but not

in the scope of this research, foveated display hardware [Akşit et al.

2019; Kim et al. 2019] offer a non-uniform distribution of pixels to

avoid rendering high resolution images at all eccentricities within a

visual field of view, we refer our curious readers to the survey by

Spjut et al. [2019] for more on foveated displays.

2.1 Foveated Rendering

Foveated rendering is motivated by the variation in acuity of the

HVS. Uniform sampling in conventional displays means that the

entire frame must be rendered and drawn at the highest resolu-

tion even though only a small region is visible at any time. Since

the fovea has a high resolution, and as displays subsume more of

the visual field - as with NED - the computational load increases

quadratically or more. Foveated rendering aims to reduce this by

targeting compute effort to where the HVS will resolve it.

This principle was first applied to video by Geisler and Perry

[1998], who encoded frames as foveated multi-resolution pyramids

to reduce bandwidth. Since then a number of gaze-contingent meth-

ods were proposed [Duchowski et al. 2004; Reingold et al. 2003].

For real-time rendering, a challenge has been to work around

the assumed uniform sampling of the traditional pipeline. Meth-

ods have included drawing multiple passes at different resolutions

[Guenter et al. 2012], using object Level-of-Detail (LoD) [Murphy

and Duchowski 2001; Ohshima et al. 1996], and finding ways to

support non-uniform rasterization [Friston et al. 2019; Meng et al.

2018] or multi-resolution rasterization [Vaidyanathan et al. 2014].

For ray-tracing [Fujita and Harada 2014; Levoy and Whitaker

1990; Weier et al. 2016; Zhang et al. 2011], foveation itself is trivial

because a ray-tracer can sen rays in any layout. Though there are

many practical difficulties in building immersive, real-time ray-

tracing systems (e.g., eye-tracking and latency).

Other works have focused on reducing shading cost. He et al.

[2014] adaptively evaluated different parts of the shading function

over time and space, while Stengel et al. [2016] placed samples

according to foveation. One of the latest developments is that of

Kaplanyan et al. [2019], who use a neural network to reconstruct

an image from samples that are dense in the fovea and sparse in

the periphery. The method works with high temporal-resolution

video, so every pixel is covered by a sample after a few frames. The

method therefore solves a temporal in-painting problem. This is

highly practical, though the loss is the same in periphery and fovea,

and does not consider their different perceptual characteristics.

The periphery is not simply a lower resolution version of the fovea

however, so it is important to consider how artifacts introduced by

foveationmethodsmay be perceived. Hoffman et al. [2018] examined

image degradation in near-eye displays. Patney et al. [2016] inves-

tigated aliasing in practical foveation techniques, and presented

improvements based on contrast sensitivity.

2.2 Peripheral Perception

Eccentricity (Deg.)

D
e

g
.

500

10

Acuity

Pooling

Fig. 3. Acuity and

pooling (~) as function

of eccentricity (G).

Perception of the central and peripheral

visuals differs in many intriguing and

complex ways as detailed in surveys by

Strasburger et al. [2011] and Rosenholtz

[2016]. What can be said with certainty,

is that recognition of patterns in the pe-

riphery becomes increasingly difficult. In

part, this is due to a loss in acuity. Often,

peripheral vision is described as “blurry",

with the blur matching the density of re-

ceptors.

Beyond Blur: Real-time Ventral Metamers for Foveated Rendering • 48:3

This effect is shown in the linear fit of

acuity fall-off in Fig. 3 as orange: at an

eccentricity of 50 degree, letters of a size around 2 degree are no

longer discernible [Anstis 1974]. A similar relation is also found

for contrast sensitivity: the contrast towards the periphery has to

increase to make gratings discernible [Legge and Kersten 1987]. This

acuity is commonly used to represent the foveal regions in foveated

rendering [Guenter et al. 2012; Patney et al. 2016]. In this work, we

will show it is beneficial to think beyond an acuity or blur-based

model of peripheral vision and that real-time practical applications

are already feasible.

Objects in the periphery do not simply appear blurry. For cen-

turies it has been noted that objects appear “different” and “hard

to see”, but not blurry [Aubert and Förster 1857]. The reduction

in acuity rather is attributed to an effect called pooling or crowd-

ing [Strasburger 2020]. Pooling means that the spatial location of

features is irrelevant, and only their aggregate statistics matter.

~9~9~

Fig. 4. Two equivalent

pooling regions.

This is shown in Fig. 4, where the two

large circles depict a pooling region with

different features in each, depicted as

dots. The statistics of those features are

identical in the sense that the number

of dots in each circle is nine. It becomes

irrelevant where the dots are and only

matters that they are present. Hence, the

regions will be perceived equivalently; they are –simple– metamers

to each other. The key to getting this effect right in images is to

ask three main questions: First, how large the pooling regions are.

Second, which statistics are to be represented. Third, what features

are we to compute statistics on.

Size. The size of the pooling regions is described by Bouma [1970]

as to depend linearly on eccentricity, shown as a blue line in Fig. 3.

Remarkably, pooling region size increases much faster than acuity is

decreasing. In other words, patterns turn into statistics much faster

than acuity fails to resolve them. Depending on what features we

consider, this function might look different, corresponding to the

blue corridor of values in Fig. 3. Our model will follow the slope in

the middle of the corridor which would mimic the effect of Visual

Cortex area 1 (V1).

Statistics. In this work, we will assume the statistics in a pooling

region are well described by their moments (mean and variance)

because they can be efficiently analyzed and synthesized. More

refined models further consider the correlation between features

[Freeman et al. 1991; Tanaka 1996]. Correlation captures effects such

as the probability that a vertical edge at a certain scale co-occurs

with a horizontal edge at some other scale. The Gram matrix in

style transfer serves the same purpose [Gatys et al. 2016]. Capturing

correlation however comes at the expense of additional processing

and storage. At the same time its visual importance can be called

into question e.g., it is ignored in popular texture synthesis methods

such as Heeger and Bergen [1995]. Storing correlation matrices

needs memory quadratic in the number of features while moment

vectors have storage requirements linear in the number features.

Also the matrix can be made to tend to diagonal-dominant by using

a decorrelated feature space like YCrCB for color. Hence, using

moment vectors seems adequate for the real-time setting we target.

Features. We assume the features to build statistics from to be

those used in the different areas of the visual cortex, in particular, the

ventral stream [Ungerleider and Haxby 1994]. The early levels are

scale- and orientation-sensitive linear filters [Carandini et al. 2005;

Hubel 1982] while higher levels are concerned with their correlation.

In this work, we assume all filters to be linear and do not look at

higher-order correlations [Tanaka 1996].

The main inspiration of this work is the results of Freeman and

Simoncelli [2011], who show that with a sophisticated model of

human perception one can compute two images that are metamers.

However, their optimization procedure computes a large number of

statistics and complex features which are not amendable to real-time

processing. Despite using gradient descent with custom gradients,

this is orders of magnitude away (hours per image) from being

applicable to VR in a real-time context (milliseconds per image).

We seek to emulate their procedure, using minimal features and

without the need to perform an optimization.

In this light, the step of Patney et al. [2016] which adjusts contrast

to match a target after blurring [Kim et al. 2011] is the most basic

version of the system by Freeman and Simoncelli [2011]: pixel color

statistics are matched. We show that for a refined effect, features will

need to be perceptual (scale and orientation-selective), and not just

pixel colors. We also confirm this in our study showing improved

performance of metamers in classification and discrimination tasks.

We note that according to Vision Science models, the Deep Fovea

work Kaplanyan et al. [2019] solves important tasks, but might not

be computing a metamer. Their method is trained to reproduce

the value of sparse samples, which are increasingly sparse in the

periphery. Instead of matching the specific peripheral statistics of a

target, their adversarial term will seek to match the general statistics

of natural images. Their network has access to several frames of

a high frame-rate animation, while we work form a single image.

We provide evidence that fooling the periphery might need less

computational effort than a neural network and that a simpler real-

timemethod is applicable to their and several other related problems.

In an attempt to speed up the work of Freeman and Simoncelli

[2011], Deza et al. [2017] and Feather et al. [2019] use an AdaIN-

based [Huang and Belongie 2017; Ulyanov et al. 2016] style trans-

fer to generate metamers. It requires executing a neural network

both for analysis and two networks (VGG inversion and pix2pix

[Isola et al. 2017]) for synthesis. Foveation is addressed by blending

style and content. However we were unable to produce plausible

metamers using these methods and it was not computationally ef-

ficient enough for real-time applications i.e., performing within a

few milliseconds on a typical frame.

In practical rendering, Tursun et al. [2019] combine a foveated ren-

dering system with adaptive sampling where areas of low contrast

are sampled less. The combination is attractive, as the thresholds

for different channels in the periphery are different from the fovea.

Their model accounts for acuity, but not for pooling. Swafford et al.

[2016] have proposed a metric for foveated rendering. It is based

on VDP [Mantiuk et al. 2011], but adapts the contrast thresholds

48:4 • David R. Walton, Rafael Kuffner dos Anjos, Sebastian Friston, David Swapp, Kaan Akşit, Anthony Steed, and Tobias Ritschel

towards the periphery. Without a notion of pooling, it will over-

estimate the difference of image pairs that are metamers. Hoffman

et al. [2018] have performed a user study to understand how typical

rendering artifacts are perceived in the periphery.

2.3 Texture Synthesis

Our second main inspiration is texture synthesis, which is very

related to metamer synthesis. A texture is an image with uniform

(stationary) statistics [Portilla and Simoncelli 2000]. Texture synthe-

sis means to generate new realizations with these statistics. Ideally

a texture model is able to not only produce some, but also enu-

merate all instances of the texture (diversity). For textures, this

generation has been done by summing up weighted noise [Per-

lin 1985] or by non-parametric sampling [Efros and Leung 1999].

Such procedures can be difficult to implement efficiently [Liang

et al. 2001]. A survey is provided by Wei et al. [2009]. While simi-

lar to texture synthesis, the key difference in creating a metamer

is that the statistics are more involved and most notably they are

spatially varying. The size of the spatial regions over which statis-

tics are constructed varies too (i.e., the pooling region size). In this

sense, we are closer to by-example texture synthesis [Galerne et al.

2012; Lagae et al. 2010]. Our method is based on a localized (non-

stationary) version of Heeger and Bergen [1995]. They match noise

at different scales and orientations to the target statistics of an ex-

emplar. They use histograms of filter responses which we compress

to moments. We empirically found the visual benefit of a full his-

togram is not proportional, when targeting a real-time application .

Freeman & Simoncelli 2011

Heeger & Bergen 2002

Q
u
a
li
ty

Speed

Neural Fovea

Blur

Patney et al 2016

Deep Fovea

Ours

h min s ms

Fig. 5. �ality-speed trade-off.

Recently, learning-based meth-

ods have been proposed to gener-

ate textures, either by optimiza-

tion [Gatys et al. 2016], which

is too slow for our purpose, or

by training a feed-forward NN

to map noise into the style of

a particular exemplar, which is

not applicable to our task as we

have field of statistics in across

the image. Methods based on

AdaIN [Huang and Belongie 2017;

Ulyanov et al. 2016] generalize to arbitrary styles but would be too

slow to apply to VR, and assume one homogeneous, stationary,

texture. Wallis et al. [2016] have studied texture perception in the

periphery, in particular comparing VGG base and simpler statistics,

and found simple features, as long as they have multiple scales and

orientations, to perform competitively.

Summary. The most relevant previous work is summarized on

Fig. 5. We see a continuum of methods spanning the quality-speed

space, starting from the original Freeman and Simoncelli [2011]

ventral metamer work (requiring hours), over texture synthesis

to newer methods based on neural network (requiring seconds

to milliseconds) and finally blur, with speed close to memcpy. Our

method is almost as fast as blur, but produces higher visual quality

at modest computational overhead. It also is the only method to

produce a metamer (marked in blue) for foveated rendering.

3 OUR APPROACH

3.1 Overview

We will explain all steps of our algorithm for an exemplar task of

creating a metamer for a known image. We will generalize this

exemplar task to practical applications e.g., computing analysis on

a server, pre-compute it or emulate it using a CNN, in Sec. 5.

We look for a mapping �Out = M(�Ind, b) from an input image �Ind
and a random value b to an output image �Out. The post-condition is

that �Out is a metamer of �Ind. The mapping is to be ergodic, i.e., all

metamers are generated as we put in all random numbers b . Without

loss of generality, we assume foveation to the image center.

Analysis Processing Synthesis

Fig. 6. Our approach has three steps: First, analyzing the input image to

extract statistics. Second, processing those statistics depending on the ap-

plication, and third, synthesizing a new image from the statistics.

Our approach proceeds in three steps: Analysis (Sec. 3.2) that ex-

tracts the statistics from the input, Processing (Sec. 3.3) that changes

those statistics and Synthesis (Sec. 3.4) that samples from the distri-

bution of metamers having the desired statistics.

3.2 Analysis

Our approach takes as input an '�� image �Ind and outputs its

statistics (In. These are found in a specific color space, using feature

pyramids and local moments for pooling, three aspects we will

discuss in the next paragraphs.

Color space. In a first step, the input image is converted to YCbCr,

a decorrelated color space [Poynton 2012]. This is important, as

we will later not capture co-statistics between feature channels, a

strategy most beneficial when channels are maximally decorrelated.

In the HVS, this step is related to low-level processing found in

receptive fields providing color opponency [Ruderman et al. 1998].

Pyramid. The ventral stream, the next step in the HVS, is sensitive

[Güçlü and van Gerven 2015] to features at all scales (Property 1)

and features are related to changes over space (Property 2). Image

pyramids are ideal to capture both properties.

Hence the input is converted into a steerable pyramid [Freeman

et al. 1991]. A steerable pyramid applies a pair of direction sensitive

filters (horizontal and vertical) to every level, followed by a sub-

sampling step. Steerability assures that the response at in-between

orientations is a linear combination of the response at the two

main directions. The original steerable pyramid designs filter in the

Fourier domain to be optimal. We however have to limit ourselves to

extremely compact filters (small kernels) for a real-time application.

We found that the optimal 5× 5 filters are sufficient for metamers in

practice for synthesis. If analysis aims to be real-time, we also use

5 × 5 filters, but also have the option to use ground truth (Fourier-

based) steerable filters if the statistics are to be produced in a pre-

process, such as in the texturing application (Sec. 5.2). We find those

optimal filters by optimizing for the filter deck that has the response

Beyond Blur: Real-time Ventral Metamers for Foveated Rendering • 48:5

Input Decorrelated color Pyramid Moments

Collapse Output

Compression Texture LoD Denoisingor or

SamplingMoments

???or

Mean Variance

Mean Variance

A
n

a
ly

si
s

(S
e

c.
 3

.2
)

P
ro

ce
ss

in
g

 (
S

e
c.

 3
.3

)
S

y
n

th
e

si
s

(S
e

c.
 3

.4
)

Fig. 7. Visualization of our approach: We start from an RGB image, which is converted to a decorrelated color space. Next, we compute a feature pyramid

comprising of steerable filter responses on multiple scales, and a low-res residual. Moments (mean and variance) of statistics of arbitrary pooling regions can

be computed in constant time, we here visualize mean and variance with a radial fall-off. The next step is an application making use of that representation.

The synthesis step uses the new statistics to compute a matching activation pyramid of noise. Collapsing this pyramid instantiates a metamer.

most similar to the ground truth filter from the original approach.

The optimization is a gradient descent on a 2 × 5 × 5 space of filters

using the ADAM solver [Kingma and Ba 2014] with the L2 image

difference as a loss. This filter kernel optimization is only performed

once and can later be used on any image. The conversion require

constant time and constant memory for arbitrary-sized images. This

requires below a milliseconds for 512×512 images on recent GPUs

in practice.

Pooling. All prior operations are linear operations. In the periph-

ery, non-linear functions pool the information over so called pooling

regions. The HVS does not perceive individual features but their

statistics aggregated spatially over the pooling region. For simplicity,

we here only look at the moments of those statistics, in particular

the mean and the variance. We further assume the pooling region

shape to be parameterized by Gaussians, so a per-pixel map '(x)

to hold the standard deviation of a Gaussian approximating the

pooling region around location x. This map has high values in the

periphery where pooling is over large regions, and small values in

the center, where less pooling is found.

Under these conditions, the statistics can be computed efficiently,

too. We here take inspiration from shadow map filtering [Donnelly

and Lauritzen 2006]. The same operation is applied to all levels ! of

the input pyramid %In, producing the a per-level moment map. We

will describe the two steps for each level.

First, a cubic MIP map mip(!) of each level ! is constructed. The

first moment map "0, the mean map, can be read directly from

this MIP map using select(mip(!), f), where select(L, f) simply

copies pixel values from the per-pixel MIP level corresponding to

bandwidth f using tri-cubic interpolation.

Second, in a similar spirit, the variance map"1, or other higher-

order moments, can be computed efficiently. The underlying trick

was used in variance shadow maps [Donnelly and Lauritzen 2006]

for real-time shadow rendering. Instead of computing a MIP map

mip(!), we compute the MIP map mip(!2) of the squares of each

level. Recalling that V[x] = E[x2] − E[x]2, we can now blur the

square map with the spatially-varying pooling blur as well to pro-

duce select(mip(!2), A), and subtracting the square-of-mean from

the mean-of-squares to arrive at variance.

The result is a pyramid that holds at every pixel and all levels the

feature statistics across each pooling region described by first and

second moments.

3.3 Processing

Processing maps the statistics to new statistics. This step is particu-

larly important in different applications. Specifically, the input sta-

tistics (In can be altered into output statistics (Out, without affecting

the peripheral perception. This opens opportunity for compression,

for baking information into textures or for inferring the values from

using a CNN as explained in Sec. 5. For the didactic exposition, we

just leave the statistics unaltered here.

3.4 Synthesis

The synthesis step converts the output statistics (Out back into

an image. As there are infinitely many images that have the same

statistics (at least for finite-order moments), this is a generative

process conditioned on random value b , in our case a pyramid with

random values as used in texture synthesis [Heeger and Bergen

1995]. This random pattern is held constant over time, providing

temporal coherence.

First, b is reshaped to have the mean and variance of each level

respectively. This is easy for Gaussians, by shifting and scaling as

in b ·"1 +"0. Note, how this differs from classic texture synthesis,

where the statistics are, by definition of a stationary texture, constant

across space. In our case, themean and variance change across image

48:6 • David R. Walton, Rafael Kuffner dos Anjos, Sebastian Friston, David Swapp, Kaan Akşit, Anthony Steed, and Tobias Ritschel

space: in a typical photo, the sky might be uniform, so the variance

of color will be lower than on the forest part of the picture below it.

Finally, all levels of the pyramid are collapsed back into an image.

We start at the coarsest desired level, sample it up, add level 8 and

apply the analysis filters until arriving at the final image. Note that

the analysis filters are self-inverting in steerable filters and by design

our optimization inherits this property.

4 IMPLEMENTATION

We have implemented two versions of our approach, one in Python

and one in Unity/C#/OpenGL. These both demonstrate the full

pipeline as described in Sec. 3. The Python implementation takes as

input any image (photo, video, interactive 3D content) generated by

a renderer and a pre-computed noise map. The first pass computes

the statistics from that input image. The applications then manipu-

late the statistics. The second pass collapses the statistics into an

image again. Stimuli for the studies in Sec. 6 and compression results

in Sec. 5.1 were produced using this implementation.

The Unity implementation (Unity 2018.4.26f1) is real-time and

follows the same approach. The scene is rendered as normal by scene

camera(s). The metamer is calculated as a post-process: the first pass

that computes the statistics is run as a sequence of shaders on the

full-screen image, no manipulation of statistics is done, and then the

second pass runs as a second rendering pass on a full screen image.

Because it runs as a post-process the metamer can be computed on

all scenes supported in Unity. The texture results in Sec. 5.2 develop

upon this framework.

The Unity implementation was extended to support the Varjo

XR1 NED. For this stereo display each eye sees both a wide-field

of view context display and a static high resolution focus display.

The display also contains a stereo eye-tracker. Thus four images

are rendered per frame. For the demonstration we apply metamers

to the context displays’ images only. See the accompanying video

for examples of output, achieved at 60 Hz for the XR1, using a Intel

i9-9900 CPU at 3.10Ghz, 64GB RAM and an NVIDIA GeForce 2080Ti

with 11 GB of GDDR 6 memory (this GPU being the minimum

specification for the XR1). The scene shown uses a panoramic image

at 8K×4K, rendering to graphics contexts of 2K×2K for the context

displays.

While metamerizing an image that is already computed at full

resolution appears to provide no practical benefits (these will come

from the applications in Sec. 5), our system is the first to allow study

of the impact of metamerized images in an interactive setting. As it

runs on modern NEDs, it opens an avenue for several experiments

in VR, Vision Science and Psychology that were not possible before.

Both implementations will be made available upon publication.

Evaluation. To better understand the impact of screen size and

thus the size of the image to be metamerized, Fig. 8 measures the

time required to metamerize an image, with a breakdown between

analysis and synthesis. These were computed on a machine with

Intel Core i7-10750H CPU at 2.60Ghz, 12 GB RAM and an Nvidia

GTX 1650 Ti GPU. We see that time is roughly linear in the number

of pixels, as expected and required for a real-time system. Our

approach requires roughly five times more memory than blur, due

to the need to maintain multiple filtered versions of each level and

a separate MIP map for each level. Recall, [Williams 1983] that MIP

maps only ever add a constant factor of ×1.3. This is true at ×1.6

also for the pyramid of pyramids we use.

It also requires five times more compute time, across all resolu-

tions. The fact that memory and time scale similarly, indicates that

the bottleneck to address is the chip bandwidth to access the statis-

tics for multiple bands and multiple orientations. Improving upon

both compute time and memory usage is important future work to

make our approach more practical. A detailed analysis of how the

number of bands, orientations and kernel filters affect result quality

in which condition would complement such effort.

Co
m

pu
te

 Ɵ
m

e
(m

s)

ResoluƟon

M
e

m
o

ry
 (
M
B
) Our analysis

Our synthesis

Our Both

512 1024 2048 4096

1

10

100

Blur

512 1024 2048 4096

1

10

100

1000

ResoluƟon

Fig. 8. Compute time and memory (in log scale) for our approach and its

passes when metamerizing images at different resolutions.

5 APPLICATIONS

We apply our approach to three tasks: metameric image compression

(Sec. 5.1), metameric textures (Sec. 5.2) and peripheral denoising

(Sec. 5.3).

We explain applications in the logic of a client-server setup. The

client is less powerful and consumes the representation produced

by the server, mapping it to a metamer. Client and server do not

need to be physically separated by a network, but can also be logical

parts of one software system on one machine.

The server has more significant computational power and access

to the non-metamerized, Ground Truth (GT) image. It transforms the

GT image into some representation related to the statistics. It further

knows or is able to predict the fixation point sufficiently, which,

without loss of generality, we will keep assuming to be located at

the image center.

We note that, unfortunately, there is no metric yet to quantify the

visual success of ourmethods, other than looking at the images in the

right viewing conditions. We can measure speed and compression

rate and bandwidth, but there is no way to measure successful

metamerization that has been proposed in the literature to our

knowledge. Previous metrics for foveation are based on acuity only,

i.e., they blur the periphery by construction, a limitation we want

to overcome in the first place. Paradoxically, our method, more

precisely its activations, might provide the metric itself, but this is

left to future investigations. The user studies in Sec. 6 will provide

further insight into how users perceive the imagery we generate.

5.1 Application: Compression

This application targets transferring images such as plain photos

and video frames, including remote-rendered content from a server

to a client. The metamer analysis and compression happens at a

server. Instead of sending updated images, the server sends updated

Beyond Blur: Real-time Ventral Metamers for Foveated Rendering • 48:7

statistics. The client is then free to realize any metamer to fit the sta-

tistics. As the statistics are much smaller than the image, bandwidth

is reduced while still producing plausible details in the periphery.

To reduce the size of the statistics, three steps are employed for

encoding: warping (Sec. 5.1.1), sampling (Sec. 5.1.2) and quantization

(Sec. 5.1.3). The inverse of those steps is used in reverse order at

decoding time. Next, we detail these three steps.

5.1.1 Warping. We recall the pooling region size to vary over the

image. If a pooling region, for example, in the periphery is maybe

10×10 pixels in size, we seek not to store all 100 pixels, but only its

statistics, a much smaller set of values. To achieve this, we warp

images, such that the local pixel density, which is constant in a

common image, becomes proportional to the pooling [Anstis 1974].

In practice, areas that are in the periphery have a density below one

and hence shrink.

Warping is a common approach for compression of foveated

images [Traver and Bernardino 2010] when applied to the image

alone. Typically, the acuity function is used for warping where

multiple input pixels in the periphery are being mapped to a single

output pixel, hence averaged, and ultimately blurred; in our case

we would like to also preserve the statistics of these averaged areas

instead. We hence look for a way to compress both the image in the

fovea, and the statistics in the periphery.

To this end, we not only compress the image, but an entire pyra-

mid to preserve the statistics. This has two goals: sufficiency and

compactness. First, we want it to be sufficient, i.e., the statistics we

need have to be preserved to the level a metamer needs. Second, it

also has to be compact, i.e., we want those statistics only to have

the resolution that is required, not more. If it was not compact, we

would lose the compression advantage of foveation. If it was insuffi-

cient, we would produce blur. Hence, the question becomes how to

warp the entire pyramid to meet both of these requirements?

For formalization, we will work in the polar domain where the

horizontal axis is radius A and the vertical axis is angle \ as seen in

Fig. 10, a. In such a setting, pixel density is constant along angle \ ,

and only varies with radius A .

We hence look into functions mapping radius A to pixel density

3 (A). These functions are different for the image and its pyramid

levels. For the image itself, it is the classic acuity / pooling function

that drops of from the center, for example 30 (A) = A−2. This function

is seen in Fig. 10a as a blue curve. Note the log scale on the vertical

density axis.

What would the density function 3; of the stat map of level ; need

to look like, given this curve 30 for the image, to be sufficient and

compact? Three things play together here. First, if the statistics map

level has a pixel density lower than the image, the density can be 0.

This is because we do not need statistics at radii where the original

image signal is present in the image. So all density functions for

the pyramid can be 0 in the fovea as this is transmitted unchanged.

This already eliminates storage for the vast part of the pyramid and

allows us to steer bandwidth to the periphery. Second, if the original

image loses details of scale 2; at some radius A (say 8 pixels compress

to 1), the statistics map has to represent them, so the pixel density

3; at A has to be larger than zero (we want the statistics of those 8

pixels). Finally, the resolution at which statistics are required also

falls off, as statistics are pooled over increasingly large regions, just

as the image is. So while having to increase and peak at the point

where statistics are most important, they can also fall down rapidly

as pooling regions grow. This leads to shapes seen as red plots in

Fig. 10b for different levels.

5.1.2 Sampling. To apply the warp to the original images as well

as to every level of the pyramid, we proceed as follows: First, we

compute the Cumulative Density Function (CDF) � (A) of 3 (A). This

is seen in Fig. 10, b. This functions � holds the accumulate density

up to radius A . Let �−1 (~) = A be its inverse, which exists as a

cumulative function is monotonically increasing. We sample the

image or the pyramid levels at regular levels �−1 (~) for ~ ∈ (0, 1).

�−1 (~) is many-to-one, i.e., many input pixels from the image or

pyramid level map to one output pixel. Simply picking the single

pixel nearest to the inversely-mapped position will both alias and

will not produce the statistics we need. Instead, we handle this

in two steps: First, if the input is # × " pixels, we sample to an

output resolution of size (' · #) ×" where ' is some bound for

the compressiveness, we use ' = 32. Note that we work in the

polar domain, where radius and angle can be handled differently. In

this approach, aliasing is prevented as for every output pixel there

is no more than one input pixel. Second, this temporary image is

resampled to the desired output by averaging groups of ' pixels into

one. Instead of just averaging pixels, we also average their squares.

This produces a map of statistics with a controlled pixel density.

5.1.3 �antization. The resultingwarped image and statisticsmaps

can now be further compressed. Currently, each channel of each

statistics map is remapped linearly to [0, 255]. Each map is then

quantized to 8 bits per channel and compressed using JPEG. Fur-

ther signal-dependent equalization or specific custom quantization

tables would likely further improve our results.

5.1.4 Results. Results are seen in Fig. 11. Input imageswere 1024×1024

pixels, meaning an uncompressed filesize of roughly 3MB. The qual-

ity setting of the JPEG examples was adjusted to give a filesize as

close as possible to that of our approach. We see that at the rates

of 41 kB per image (i.e., roughly a 1:75 ratio), naive JPEG suffers

and a naive foveated JPEG fairs better, but blurs the periphery. At

same effort, our approach achieves the same by making a slight

concession to the periphery, but plausible periphery. Unfortunately,

as explained in Sec. 2 no metric to compare peripheral stimuli is

available. We kindly refer the reader to the experimental evaluation

of our approach in Sec. 6.

5.2 Application: Texturing

In this section, we synthesize metamers in screen space, but from

statistics stored in textures. The key observation is, that the pooled

statistics of an image are more compact than the image itself as

pooling is blurring which removes details and can be stored in a

lower resolution. Hence, accessing the statistics can save bandwidth.

To get plausible details back, we metamerize the texture reads on-

the-fly. This can be realized using a pre-computation and a run-time

step. The idea is illustrated and explained in Fig. 12.

48:8 • David R. Walton, Rafael Kuffner dos Anjos, Sebastian Friston, David Swapp, Kaan Akşit, Anthony Steed, and Tobias Ritschel

Input Lowpass Moments 1 Moments 2 Moments 3 Result

512x512 128x128 64x32 32x16 16x8 512x512

JP
E

G

P
o

la
r

W
a

rp

U
n

-w
a

rp

U
n

-p
o

la
r

M
e

ta
m

e
ri

ze

Fig. 9. Metamerized foveal image compression: Starting from an input image in some resolution e.g., 512×512, we change to the polar domain and apply

different carefully-cra�ed warping functions (as seen in Fig. 10) that match output pixel density to what needs to be captured to produce a metamer. The

lowpass captures the fovea (the gray-scale inset shows this density), but shrinks the periphery, hence it can be sub-sampled by factor 4. The moments for the

periphery are smooth due to pooling, and hence can be sub-sampled progressively and aggressively, providing the compression. The resulting images can be

compressed with any lossy or lossless compression. Applying inverse warp the polar transform and sampling an instance of the metamer produces a result in

the original resolution. More compression result details are seen in Fig. 11.

r

d
 (

r
)

r

D
 (

r
)

Common

Moment 0

Moment 1

Moment 2

Moment 3

Moment 4

a) b)

N
o

rm
.

C
u

m
.

P
ix

.
D

e
n

s.

P
ix

e
l

d
e

n
si

ty

Radius Radius

c)

P
ix

e
ls

r

θ

Fig. 10. Pixel density (a) and normalized cumulative density (b) on the

vertical axis for different eccentricity on the horizontal axis. Colors indicate

pyramid levels (red), respectively, the image itself (blue) and a non-foveated

baseline (do�ed green). (c): Pixel proportion per level.

Pre-computation. First, we build a pyramid of the texture as done

in our analysis step (Sec. 3.2). This texture can have any arbitrary

size, in theory it can be infinite-resolution, as long aswe can compute

the statistics, i.e., estimate the variance of filter activations. As this

is a pre-process, we can also use any filter in the Fourier basis

to create the pyramid, without resorting to our optimized filters

for fast analysis. A typical example would be 8192 pixels for the

planet texture we demonstrate. We compute the moment map for

this texture and store it as defined in the analysis in Sec. 3.2. This

requires additional memory (30 %, as in common MIP maps), but

with the right paging and caching (which we did not implement in

our prototype), only the foveated part of that texture ever needs to

be accessed and held in memory.

Runtime. The key idea is to fetch only the moments we need in

the framebuffer from the texture without the need to ever compute

them in the framebuffer. This has two aspects: picking the right

pyramid level and picking the right pooling size.

Let us first approach picking the right pyramid level. Consider an

image with texture resolution # (e.g., 8192), a rendering resolution

" (e.g., 1024). Consider a pixel in the rendered framebuffer. Assume

this pixel has a pixel-to-texel ratio logarithm d . This value depends

on view, texture coordinate and geometry in a complex way but

can be computed from<, # and the texture coordinate derivatives

following the OpenGL specification for MIP level selection. In our

example, for an orthographic fronto-parallel view on a texture quad

textured geometry fitting the screen, we would have d = 3, as every

pixel maps to (23)2 texels. To fill the framebuffer at resolution "

resp. level 0, we hence have to fetch the pyramid level d . So far

this is classic MIP mapping [Williams 1983]. Remember the highest-

resolution MIP level is typically (e.g., in OpenGL) indexed at 0.

To pick the right pooling for every pixel in the framebuffer pyra-

mid, we have to consider the spatial position. Pixels close to the

fovea pool over small regions, pixels at the periphery pool over

large regions. Note, that this is not a property inside the texture,

but inside the framebuffer. Consider a pixel that has the quadratic

pooling region of log-edge length [in screen space. For example, a

pixel in the periphery grouping 16 × 16 values would have [= 4.

Classic foveated rendering could now fetch the texture MIP level

d+[, a combination of blur for filtering and a combination of further

blur for foveation. This would reduce bandwidth, as operating at

higher MIP levels is beneficial i.e., saves memory.

The downside is, that the stats of the texture between d and [

are lost. We can access them without accessing d , by looking up the

MIP level [− d in pyramid level d +[. This texture holds exactly the

pooled (hence low-resolution) stats we are missing. So we use values

from d +[as the low-pass and add the details fetched between d and

d + [. Instantiating a metamer with those stats produces a texture

signal of d .

We have made a further optimization, in which we do not even

fill a pyramid of moments to give to the synthesis step, but a shader

that generates the texture value by simply adding up [− d noise

values, scaled by the mean and variance and the low-pass value d .

We use this variant in all our texturing results.

Results. Please see Fig. 13 for results and their discussion. The

bandwidth saved for a 512×512 framebuffer using the Mars texture

is 52 %, for a 4k framebuffer, it is 79 %.

5.3 Application: Denoising

The final application is to de-noise Monte Carlo (MC) path-traced

images, such that they are noise-free, but metameric to the reference

image instead of minimizing any classic image error. Typical denois-

ing approaches map from noisy path traced images to clean images.

We instead map from noisy path traced images to a moments map,

which can then be turned into a metamer. The intuition is, that

finding the statistics of an image is an easier task for a neural net

than finding the image itself.

Beyond Blur: Real-time Ventral Metamers for Foveated Rendering • 48:9

JPEG (40KB)

Fovea Periphery

Ours (40KB)

Fovea Fovea FoveaPeriphery Periphery Periphery

ReferenceFoveated JPEG (40KB)

Ours (41KB) ReferenceFoveated JPEG (41KB)JPEG (41KB)

Fovea FoveaFoveaFovea Periphery Periphery Periphery Periphery

Fig. 11. Compression results for different methods (rows) on different inputs (columns). All files have a size around 40kB i.e., a 1:75 ratio. In the insets, we

note that, first, the fovea is good in all methods, except JPEG and, second, the periphery is plausible only in ours.

Training Data. We first sample pairs of noisy path-traced images

with a finite number of samples and a noise-free reference. All

training images are renders of the same 3D scene show in Fig. 14.

The number of samples increases from 1 in the periphery to 32 in the

center. We apply our analysis to the reference images to generate

corresponding moments maps. These moments maps are the desired

output of our network. Here our baseline is an identical network,

attempting to map noisy images to clean RGB images.

Network. We train a conventional U-net [Ronneberger et al. 2015]

under L2 loss with 8 layers, 64 internal activations and residual links

to map from the reference images to the moment maps.

We do not make use of a guidance signal (G-buffer), nor any of

the many other exciting inventions made in deep MC denoising

[Bako et al. 2017; Chaitanya et al. 2017; Kalantari et al. 2015].

Results. As there is no published way to quantify peripheral re-

sults, we show and discuss qualitative results in Fig. 14.

Please note that our intended purpose here is to compare estima-

tion of moments with direct estimation of RGB values. Consequently

the absolute performance of the networks is less important than

the comparison between them. Both of our networks use the same

architecture, therefore, any improvement in the architecture would

be expected to improve the results of both networks.

Our result with the network that maps noisy images to moment

maps indicates that metamerism is a process that can be effectively

learned by CNNs. Investigating denoising of general scenes with a

state-of-the-art architecture remains future work and we explicitly

do not claim state-of-the-art denoising here. Our contribution is a

practical method that denoises while targeting the characteristics

of peripheral vision.

6 PERCEPTUAL EVALUATION

We conducted a number of user studies to evaluate the effectiveness

of our method, as well as others, on perception in the periphery.

48:10 • David R. Walton, Rafael Kuffner dos Anjos, Sebastian Friston, David Swapp, Kaan Akşit, Anthony Steed, and Tobias Ritschel
R

e
fe

re
n

ce
A

cu
it

y
O

u
rs

Fovea Periphery

M
e

a
n

 M
IP

S
td

. d
e

v.
 M

IP

1 1 1 1

1 22 42 82

1 22⁄2 42⁄2 82⁄2

Fig. 12. Metamerized textures for foveated rendering. The top row shows a

rendering of four planets sharing a texture and a subject fixating the yellow

cross, i.e., foveation is le�, periphery is right. In a ground-truth rendering

(top row), all planets have the same distance and same texture, hence access

(blue arrows) the same MIP level 0. The number 1 denotes bandwidth

saving, which remains the same for reference rendering. In an acuity-based

foveated rendering system (middle row), the foveated planet would access

MIP level 0, but towards the periphery, the MIP level can increase up to

level 3. Bandwidth is only 1/23 × 23 = 1/64 but details get blurred. In our

approach (bo�om row), the sameMIP levels as in the acuity-based approach

are accessed, but additionally, we access the smooth moments of the texture.

This requires more bandwidth, but still saving factor 1/2 × 23 × 23 = 1/32

but produces details in the periphery.

In the first (Sec. 6.1) we measured the effects on performance in

an acuity dependent classification task. In the second (Sec. 6.2) we

measured image preferences. In the third (Sec. 6.3) we measure

acuity using a within-frame detection task.

All experiments were run in VR on Oculus Quest V1. Experiments

were distributed, with volunteers running the trials on their own

devices. Demographics were otherwise uncontrolled as we did not

expect any effect on low-level vision [Shaqiri et al. 2018]. In all

studies participants saw a small dot (1 deg or so in size) at the

center of their vision, and were told to focus on this dot until the

experiment completed. An example view is shown in Fig. 15. All

experiment responses were binary, given with hand controllers.

Each experiment lasted 15-20 minutes. Experiments were approved

by UCL Ethics Board (4547-013).

. Across three experiments, we compared four methods. i) classic

Blur, (implemented as a filter pyramid) potentially at different band-

widths, ii)Ourmethod, iii) the original offline metamer method F&S

as described by Freeman and Simoncelli [2011], and iv) a Reference.

All methods operate on non-linear color (subject to display gamma)

as they are concerned with perceived contrasts, not with preserving

energy.

Table 1. Comparison of all methods to Reference when fi�ed to a Logistic

Model seen in Fig. 17. The first three values are the resulting fit parameters.

The column ? is the significance of the fit, i.e., where a low value indicates

probability of no difference.

Method Estimate Std. Err.) -Stat. ?

Blur 0.35 0.105 0.138 0.759 0.447

Blur 0.70 -0.391 0.131 -2.987 0.003

Blur 1.05 -0.611 0.129 -4.473 <0.001

Blur 1.40 -0.846 0.127 -6.631 <0.001

Ours 0.258 0.141 1.827 0.067

6.1 Task Performance Experiment

This study investigated how metamerism affects task performance.

Metamers should contain the same information as the reference, and

so support equivalent performance (Hyp. i). We also hypothesize

that the blur typically applied in foveated rendering could obscure

information [Rosenholtz 2016] and so reduce performance (Hyp. ii).

We test these with a symbol discrimination task. Participants (# =

14) were asked to classify symbols in their periphery with different

foveation effects applied, while we measured their success.

Protocol. A major application of foveated rendering will be for

VR. However, most current headsets do not have sufficiently high

quality eye trackers. We therefore designed our study to be robust to

uncontrolled eye gaze, and so enabled its running on Oculus Quests.

Landolt circles (circles with or without a gap) were displayed at

random polar-angles at given eccentricities for 150 ms, after which

participants were asked to classify them as open or closed. The

random polar coordinate means that even if a participant attempted

to cheat, they would not gain a statistically significant advantage.

We tested four blur rates covering the range of Patney et al. [2016].

Each participant saw an equal number of open and closed symbols

(5 each), for each method (6) and eccentricity (5), for a total of 300

observations. Symbols were displayed with a height of 1.25 deg

between 5 and 25 deg eccentricity. At 30 deg, this height is the

threshold of detectibility [Anstis 1974], and even control answers

should reduce to chance level. Example symbols are shown in Fig. 16.

Analysis. Fig. 17 shows how the probability of success varies with

eccentricity and foveation method. At the most extreme eccentric-

ities, performance tends towards chance for all conditions, as the

stimuli reaches the limits of the HVS. To test for significance, we

fit a Generalized Linear Model [Dobson and Barnett 2018] with a

binomial distribution, i.e.,

logit(correct) ∼ 1 + eccentricity + method,

in Wilkinson notation [Wilkinson and Rogers 1973], treating eccen-

tricity as a co-variate, so we can compare the significance of the

foveation methods (Tbl. 1). We see that compared to the reference,

there is no significant difference in performance with our stimuli

(Hyp. i), or with the baseline blur rate. However, performance de-

grades significantly as blur increases (Hyp. ii). A Spearman’s rank

test on the correlation of performance with time did not show any

learning effects (? > 0.61).

Beyond Blur: Real-time Ventral Metamers for Foveated Rendering • 48:11

Blur

Fovea Periphery

Ours

Fovea Periphery

Reference

Fovea Periphery

Fig. 13. Our ventral metamer textures applied to a model of planet Mars. All methods (columns) reproduce a sharp fovea. Foveated rendering reduces

bandwidth and memory by accessing only high MIP levels in the periphery. This leads to a blurry periphery. We also ever only access high MIP levels in the

fovea, but these store statistics, allowing us to produce details no the fly, which are perceived similar to a reference by peripheral vision.

Path tracing

Fovea Periphery

Baseline CNN

Fovea Periphery

Metamer CNN

Fovea Periphery

Reference

Fovea Periphery

Fig. 14. Path tracing denoising application. Here, we compare two CNNs that denoise MC path-traced images (1st column). The baseline CNN (2nd column)

maps noisy images to to complete RGB images. In the periphery, all noise is cleaned, but in the periphery, edges are hallucinated and smooth values are put

in-between. Our CNN (3rd column) maps a noisy MC image to a moment map, that is then metamerized. The resulting image has no noise in the fovea. In

the periphery, however, the result contains noise matching the statistics of the reference (4th column).

6.2 Preference Experiment

This study measured how users judged images with foveation meth-

ods applied. Previous works, e.g., Patney et al. [2016], reported

anecdotally that blur resulted in a sense of “tunnel vision”. We set

out to determine if we saw similar effects for the methods we study

by asking user for preferences.

Protocol. Participants (# = 10) were shown pairs of images, time-

divided, for 0.5 seconds each with a randomized display order. Bal-

anced numbers (# = 6) of six method-combinations (Fig. 18) were

shown, for each scene (# = 7), for a total of 252 decisions per par-

ticipant. For blur-rate, we chose the baseline of 0.35 (Patney et al.

48:12 • David R. Walton, Rafael Kuffner dos Anjos, Sebastian Friston, David Swapp, Kaan Akşit, Anthony Steed, and Tobias Ritschel

Fig. 15. Participant view of experiment. Introduction screen for task perfor-

mance study. To avoid Troxler fading [Clarke 1960], an undistorted skybox

was presented as the background.

Fig. 16. Task performance experiment stimuli at 25 deg eccentricity. Le� to

right: Reference, Blur at 0.35 and Ours.

1

.5

REFERENCE

BLUR 0.35

BLUR 0.70

BLUR 1.05

BLUR 1.40

OURS Chance

5 10 15 20 25

.6

.7

.8

.9

Fig. 17. Probability of correctly classifying the symbol as a function of

eccentricity, for Reference, four Blur, and Our method. Thin lines are the

data, thick lines the Logistic Fit. Error bars indicate standard error.

[2016]). We also modified the classic metamer F&s method to work

with epirectangular projections.

It is not feasible to make this study robust without an eye tracker.

Instead, we proceeded under the expectation that therewould be bias

in the results, and our analysis would focus on relative responses.

F�S vs. O�� p < .001

vs. BLURO��� p < .012

O��� vs. R��������
p < .001

B��� vs. R��������
p < .001

F�S vs. R�������� p < .001

vs. B���F�S

p < .001

0.5 0.90.80.70.6

Fig. 18. Preferences as proportions for different treatments.

Analysis. Fig. 18 shows preferences as probabilities for each com-

bination. For each pair we perform a binomial test to check signifi-

cance compared to chance. A number of significant results validate

the protocol and suggest that lack of significance in others could

be due to perceptual equivalence. A Spearman’s rank correlation

with time showed no evidence of learning for Blur, F&S or Ours

(? > 0.85, 0.35, 0.76). As expected there is a bias towards the Refer-

ence, as we did not control for gaze. There is no significant difference

between Ours and Blur at the 0.01 level. Our method is strongly

preferred over classic metamers F&S however.

This outcome is at odds with the common observation that blur

is an artifact in foveated rendering. However, it could either be be-

cause there is no perceived difference and hence preference does not

matter or because participants perceived the difference but simply

did not prefer it e.g., because they like blurry peripheries, remind-

ing them of depth-of-field. We conducted an additional detection

experiment to separate these possible explanations.

6.3 Detection Experiment

Our preference study revealed participants made distinctions be-

tween images with significance, however it is difficult to know the

criteria with which naïve participants make such judgments, espe-

cially as we could not control for gaze. Apparently, subjects seem to

prefer blur, probably associated with depth-of-field and the absence

of artifacts. To explore peripheral perception further, we perform a

study focused on effect detection which is more relevant to our use

case of foveated rendering.

Protocol. Participants (# = 10) were shown images bisected at

a random angle [0, 360] for 0.5 seconds. Each image was either a

control image (Reference), or one side was foveated, while the other

had either the same foveation (consistent), or showed the refer-

ence (inconsistent). Control images are inherently consistent. Three

foveation methods were used: Ours, Blur and F&S. The area around

the bisector was alpha-blended to avoid introducing additional fre-

quencies. Participants were asked to indicate whether or not the

overall image was consistent. Each participant saw 6 consistent and

6 inconsistent images for each method (# = 3), in addition to 6

reference images, for each scene (# = 7), for a total of 294 decisions.

The random angle made the study robust to lack of eye tracking.

Fig. 19 shows how to construct an inconsistent bisected image with

one of the three foveation methods. Consistent stimuli are just the

Reference image, or the full image processed with one of the three

foveation methods.

Analysis. The measures of interest were (a) whether users could

correctly detect a method is consistent and (b) the amount of bias by

which a method is considered consistent, regardless if it was or not.

The first one measures if answers are correct. The second measures

if answers are wrong, how they are biased.

The two measures are closely related. Conditions were balanced,

so if participants answered correctly the majority of the time, there

would be an equal distribution of choices between Consistent and

Inconsistent. If participants answered incorrectly however, theymay

tend to over- or underestimate the consistency of particular methods.

This would be reflected in the total proportion of Consistent to

Beyond Blur: Real-time Ventral Metamers for Foveated Rendering • 48:13

OURS, BLUR, F&S X, REFERENCE
RandomRandom

Fig. 19. Preparation of inconsistent stimuli for detection experiment. A

randommethod X is selected out of three foveation methods. This is blended

with the Reference image according to an alpha gradient along a randomly

chosen direction.

Inconsistent responses. If a response is biased towards a method,

that may indicate a subliminal preference.

Fig. 20 shows the probability of answering correctly and the bias.

The control treatment (Reference-Reference) shows that the pro-

tocol is working, as participants judged correctly the vast majority

of the time, above 80%. Participants were unable to make accu-

rate conscious judgments as correctness was not significant for any

foveation method. When we look at the bias however, we see partic-

ipants rated Ours as consistent with a significantly higher chance

than Blur, or F&S (Fig. 20, right). So even if subjects did not express

preference and the task of detection is hard, they significantly and

with a strong effect tend to perceive Ours to be more consistent,

which is the aim of this work and foveated rendering in general.

The significance of some treatments is evidence that the lack of

significance in others could be attributed to perceptual equivalence,

rather than a protocol failure.

REFERENCE

F&S

OURS

BLUR

p < 0.05

p < 0.24

p < 0.35

p < 0.01

p < 0.01

p < 0.01

80%20% 80%20%Correct Bias

Fig. 20. Proportion of images judged correctly as consistent (orange), and

the bias towards or away from judging a method as consistent (blue). Bars

are annotated with the ?-values of a binomial test comparing to chance.

6.4 Discussion

Our evaluation shows that our metamers retain information neces-

sary match the ground truth in a task performance study, whereas

performance quickly degrades with blur rate (Sec. 6.1). When par-

ticipants were conscious of the difference between our metamers

and blur, our metamers were no less desirable than blur (Sec. 6.2).

When asked to detect the effect however, participants were unable

to make accurate conscious judgments, but did show a bias in favor

of our metamers, with the overall ratings closest to the reference of

any foveation method (Sec. 6.3). This demonstrates the potential of

our method, however we still need to evaluate it within a full VR

pipeline with a working eye tracker to confirm the results with vary-

ing gaze. Additionally these experiments focused on static scenes;

quantifying the perception of metamers in motion remains future

work. An important building block, would be to rely on temporally

coherent noise [Kass and Pesare 2011].

7 CONCLUSION

We present a new rendering method for generating high-quality

ventral metamers for foveated rendering at real-time rates. Our

method relies on the key idea of accounting for the pooling char-

acteristics of the HVS. Furthermore, with the help of user studies,

we show that we match the pooled statistics in a realistic and ac-

curate manner. Our approach demonstrates that ventral metamers

can address an inherent problem in the foveated rendering litera-

ture, and open the gate towards a series of important applications

in graphics ranging from compression to texturing or de-noising.

We believe our approach can play a key role in bridging the gap

between foveated rendering pipelines and their counterparts in next

generation foveated near-eye displays.

ACKNOWLEDGMENTS

This work was funded by the EPSRC/UKRI project EP/T01346X/1.

REFERENCES
Kaan Akşit, Praneeth Chakravarthula, Kishore Rathinavel, Youngmo Jeong, Rachel

Albert, Henry Fuchs, and David Luebke. 2019. Manufacturing application-driven
foveated near-eye displays. IEEE Trans Vis and Comp Graph 25, 5 (2019), 1928–1939.

Rachel Albert, Anjul Patney, David Luebke, and Joohwan Kim. 2017. Latency require-
ments for foveated rendering in virtual reality. ACM Trans App Perc 14, 4 (2017).

Stuart M Anstis. 1974. A chart demonstrating variations in acuity with retinal position.
Vis Res 14, 7 (1974), 589–592.

H Aubert and R Förster. 1857. Beiträge zur Kenntniss des indirecten Sehens.(I). Unter-
suchungen über den Raumsinn der Retina. Archiv für Ophthalmologie 3, 2 (1857),
1–37.

Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill,
Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-predicting convo-
lutional networks for denoising Monte Carlo renderings. ACM Trans Graph 36, 4
(2017), 97–1.

Herman Bouma. 1970. Interaction effects in parafoveal letter recognition. Nature 226,
5241 (1970), 177–178.

Matteo Carandini, Jonathan B. Demb, Valerio Mante, David J. Tolhurst, Yang Dan,
Bruno A. Olshausen, Jack L. Gallant, and Nicole C. Rust. 2005. Do we know what
the early visual system does? J Neuroscience 25, 46 (2005), 10577–10597.

Chakravarty R Alla Chaitanya, Anton S Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive reconstruc-
tion of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM
Trans Graph 36, 4 (2017), 1–12.

FJJ Clarke. 1960. A study of Troxler’s effect. Optica Acta: Int J Optics 7, 3 (1960),
219–236.

Arturo Deza, Aditya Jonnalagadda, and Miguel Eckstein. 2017. Towards metamerism
via foveated style transfer. arXiv:1705.10041 (2017).

Annette J. Dobson and Adrian G. Barnett. 2018. An Introduction to Generalized Linear
Models. Chapman and Hall/CRC.

William Donnelly and Andrew Lauritzen. 2006. Variance shadow maps. In Proc. i3D.
161–165.

Andrew T Duchowski, Nathan Cournia, and Hunter Murphy. 2004. Gaze-Contingent
Displays: A Review. CyberPsychology & Behavior 7, 6 (2004), 621–634.

Alexei A Efros and Thomas K Leung. 1999. Texture synthesis by non-parametric
sampling. In ICCV, Vol. 2. 1033–1038.

Mark D Fairchild. 2013. Color appearance models. John Wiley & Sons.

48:14 • David R. Walton, Rafael Kuffner dos Anjos, Sebastian Friston, David Swapp, Kaan Akşit, Anthony Steed, and Tobias Ritschel

Jenelle Feather, Alex Durango, Ray Gonzalez, and Josh McDermott. 2019. Metamers
of neural networks reveal divergence from human perceptual systems. NeurIPS 32
(2019), 1–25.

Jeremy Freeman and Eero P Simoncelli. 2011. Metamers of the ventral stream. Nature
Neuroscience 14, 9 (2011), 1195–1201.

William T Freeman, Edward H Adelson, et al. 1991. The design and use of steerable
filters. IEEE PAMI 13, 9 (1991), 891–906.

Sebastian Friston, Tobias Ritschel, and Anthony Steed. 2019. Perceptual rasterization
for head-mounted display image synthesis. ACM Trans Graph 38, 4 (2019), 1–14.

Masahiro Fujita and Takahiro Harada. 2014. Foveated real-time ray tracing for virtual
reality headset. SIGGRAPH Asia Posters 14 (2014).

Bruno Galerne, Ares Lagae, Sylvain Lefebvre, and George Drettakis. 2012. Gabor noise
by example. ACM Trans Graph 31, 4 (2012), 1–9.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2016. Image style transfer
using convolutional neural networks. In CVPR. 2414–2423.

Wilson S Geisler and Jeffrey S Perry. 1998. Real-time foveated multiresolution system
for low-bandwidth video communication. In HVIE III, Vol. 3299. 294–305.

John A. Greenwood, Peter J. Bex, and Steven C. Dakin. 2009. Positional averaging
explains crowding with letter-like stimuli. Proc NAS US 106, 31 (2009), 13130–13135.

Umut Güçlü and Marcel A.J. van Gerven. 2015. Deep neural networks reveal a gradient
in the complexity of neural representations across the ventral stream. J Neuroscience
35, 27 (2015), 10005–10014.

Brian Guenter, Mark Finch, Steven Drucker, Desney Tan, and John Snyder. 2012.
Foveated 3D graphics. ACM Trans Graph 31, 6 (2012), 1–10.

Yong He, Yan Gu, and Kayvon Fatahalian. 2014. Extending the graphics pipeline with
adaptive, multi-rate shading. ACM Trans Graph 33, 4 (2014).

David J Heeger and James R Bergen. 1995. Pyramid-based texture analysis/synthesis.
In Proc. SIGGRAPH. 229–238.

David Hoffman, Zoe Meraz, and Eric Turner. 2018. Limits of peripheral acuity and
implications for VR system design. J SID 26, 8 (2018), 483–495.

Xun Huang and Serge Belongie. 2017. Arbitrary style transfer in real-time with adaptive
instance normalization. In ICCV. 1501–1510.

David H. Hubel. 1982. Exploration of the primary visual cortex, 1955–78. Nature 299,
5883 (oct 1982), 515–524.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-image
translation with conditional adversarial networks. In CVPR. 1125–1134.

Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. 2015. A machine learning
approach for filtering Monte Carlo noise. ACM Trans Graph 34, 4 (2015), 122–1.

Anton S Kaplanyan, Anton Sochenov, Thomas Leimkühler, Mikhail Okunev, Todd
Goodall, and Gizem Rufo. 2019. DeepFovea: Neural reconstruction for foveated
rendering and video compression using learned statistics of natural videos. ACM
Trans Graph 38, 6 (2019), 1–13.

Michael Kass and Davide Pesare. 2011. Coherent noise for non-photorealistic rendering.
ACM Trans.Graph. (TOG) 30, 4 (2011), 1–6.

Jonghyun Kim, Youngmo Jeong, Michael Stengel, Kaan Akşit, Rachel Albert, Ben
Boudaoud, Trey Greer, Joohwan Kim, Ward Lopes, Zander Majercik, et al. 2019.
Foveated AR: dynamically-foveated augmented reality display. ACM Trans Graph
38, 4 (2019), 1–15.

Min H Kim, Tobias Ritschel, and Jan Kautz. 2011. Edge-aware color appearance. ACM
Trans Graph 30, 2 (2011), 1–9.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv:1412.6980 (2014).

Ares Lagae, Peter Vangorp, Toon Lenaerts, and Philip Dutré. 2010. Procedural isotropic
stochastic textures by example. Computers & Graphics 34, 4 (2010), 312–321.

Gordon E Legge and Daniel Kersten. 1987. Contrast discrimination in peripheral vision.
J OSA A 4, 8 (1987), 1594–1598.

Marc Levoy and Ross Whitaker. 1990. Gaze-directed volume rendering. In Proc. i3D.
217–223.

Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and Heung-Yeung Shum. 2001. Real-time
texture synthesis by patch-based sampling. ACM Trans Graph 20, 3 (2001), 127–150.

Rafał Mantiuk, Kil Joong Kim, Allan G. Rempel, and Wolfgang Heidrich. 2011. HDR-
VDP-2. ACM Trans Graph 30, 4 (2011), 1–14.

Xiaoxu Meng, Ruofei Du, Matthias Zwicker, and Amitabh Varshney. 2018. Kernel
foveated rendering. Proc. i3D 1, 1 (2018), 1–20.

Hunter Murphy and Andrew T Duchowski. 2001. Gaze-contingent level of detail
rendering. Proc. Eurographics (2001).

Toshikazu Ohshima, Hiroyuki Yamamoto, and Hideyuki Tamura. 1996. Gaze-directed
adaptive rendering for interacting with virtual space. Proceedings - Virtual Reality
Annual International Symposium (1996), 103–110.

Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris Wyman, Nir Benty,
David Luebke, and Aaron Lefohn. 2016. Towards foveated rendering for gaze-tracked
virtual reality. ACM Trans Graph 35, 6 (2016), 179.

Ken Perlin. 1985. An image synthesizer. ACM Siggraph Computer Graphics 19, 3 (1985),
287–296.

Javier Portilla and Eero P Simoncelli. 2000. A parametric texture model based on joint
statistics of complex wavelet coefficients. Int J Comp Vis 40, 1 (2000), 49–70.

Charles Poynton. 2012. Digital Video and HD: Algorithms and Interfaces. Morgan
Kaufmann. 752 pages.

Eyal M. Reingold, Lester C. Loschky, George W. McConkie, and David M. Stampe. 2003.
Gaze-contingent multiresolutional displays: An integrative review. Human Factors
45, 2 (2003), 307–328.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. In MICCAI. Cham, 234–241.

R Rosenholtz. 2016. Capabilities and Limitations of Peripheral Vision. Annual review of
vision science 2 (2016), 437.

Ruth Rosenholtz, Jie Huang, Alvin Raj, Benjamin J. Balas, and Livia Ilie. 2012. A
summary statistic representation in peripheral vision explains visual search. J
Vision 12, 4 (2012), 14–14.

Daniel L. Ruderman, Thomas W. Cronin, and Chuan-Chin Chiao. 1998. Statistics of
cone responses to natural images: implications for visual coding. J OSA A 15, 8
(1998), 2036–2045.

Anita M. Schmid, Keith P Purpura, Ifije E Ohiorhenuan, Ferenc Mechler, and Jonathan D
Victor. 2009. Subpopulations of neurons in visual area V2 perform differentiation
and integration operations in space and time. 3 (2009), 1–16.

Albulena Shaqiri, Maya Roinishvili, Lukasz Grzeczkowski, Eka Chkonia, Karin Pilz,
Christine Mohr, Andreas Brand, Marina Kunchulia, and Michael H. Herzog. 2018.
Sex-related differences in vision are heterogeneous. Scientific Rep 8, 1 (2018), 7521.

Josef Spjut, Ben Boudaoud, Jonghyun Kim, Trey Greer, Rachel Albert, Michael Stengel,
Kaan Aksit, and David Luebke. 2019. Toward standardized classification of foveated
displays. arXiv:1905.06229 (2019).

Michael Stengel, Steve Grogorick,Martin Eisemann, andMarcusMagnor. 2016. Adaptive
image-space sampling for gaze-contingent real-time rendering. 35, 4 (2016), 129–39.

Hans Strasburger. 2020. Seven Myths on Crowding and Peripheral Vision. i-Perception
11, 3 (2020).

Hans Strasburger, Ingo Rentschler, and Martin Jüttner. 2011. Peripheral vision and
pattern recognition: A review. J Vision 11, 5 (2011), 13–13.

Nicholas T Swafford, José A Iglesias-Guitian, Charalampos Koniaris, Bochang Moon,
Darren Cosker, and KennyMitchell. 2016. User, metric, and computational evaluation
of foveated rendering methods. In Proc. SAP. 7–14.

Keiji Tanaka. 1996. Inferotemporal Cortex and Object Vision. Ann Rev Neuro 19, 1
(1996), 109–39.

V Javier Traver and Alexandre Bernardino. 2010. A review of log-polar imaging for
visual perception in robotics. Robotics and Autonomous Systems 58, 4 (2010), 378–398.

Okan Tarhan Tursun, Elena Arabadzhiyska-Koleva, Marek Wernikowski, Radosław
Mantiuk, Hans-Peter Seidel, Karol Myszkowski, and Piotr Didyk. 2019. Luminance-
contrast-aware foveated rendering. ACM Trans Graph 38, 4 (2019), 1–14.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. 2016. Instance normalization:
The missing ingredient for fast stylization. arXiv:1607.08022 (2016).

Leslie G Ungerleider and James V Haxby. 1994. ‘What’ and ‘where’in the human brain.
Current Opinion in Neurobiology 4, 2 (1994), 157–65.

Karthik Vaidyanathan, Marco Salvi, Robert Toth, Tim Foley, Jim Akenine-Möller, Tomas
Nilsson, Jacob Munkberg, Jon Hasselgren, Masamichi Sugihara, Petrik Clarberg,
Tomasz Janczak, and Aaron Lefohn. 2014. Coarse Pixel Shading. In Proc. HPG.

Thomas SA Wallis, Matthias Bethge, and Felix A Wichmann. 2016. Testing models of
peripheral encoding using metamerism in an oddity paradigm. J Vision 16, 2 (2016),
4–4.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk. 2009. State of the Art in
Example-based Texture Synthesis. In Eurographics STAR. 93–117.

Martin Weier, Thorsten Roth, Ernst Kruijff, André Hinkenjann, Arsène Pérard-Gayot,
Philipp Slusallek, and Yongmin Li. 2016. Foveated real-time ray tracing for head-
mounted displays. 35, 7 (2016), 289–298.

G. N. Wilkinson and C. E. Rogers. 1973. Symbolic Description of Factorial Models for
Analysis of Variance. J Royal Stat Soc C 22, 3 (1973), 392–399.

Lance Williams. 1983. Pyramidal parametrics. In Proc. SIGGRAPH. 1–11.
Xin Zhang, Wei Chen, Zhonglei Yang, Chuan Zhu, and Qunsheng Peng. 2011. A

new foveation ray casting approach for real-time rendering of 3D scenes. Proc
CAD/Graphics (2011), 99–102.

	Abstract
	1 Introduction
	2 Previous Work
	2.1 Foveated Rendering
	2.2 Peripheral Perception
	2.3 Texture Synthesis

	3 Our Approach
	3.1 Overview
	3.2 Analysis
	3.3 Processing
	3.4 Synthesis

	4 Implementation
	5 Applications
	5.1 Application: Compression
	5.2 Application: Texturing
	5.3 Application: Denoising

	6 Perceptual Evaluation
	6.1 Task Performance Experiment
	6.2 Preference Experiment
	6.3 Detection Experiment
	6.4 Discussion

	7 Conclusion
	Acknowledgments
	References

