
From Sound to Sight: Using Audio Processing to

enable Visible Light Communication

Stefan Schmid∗†, Daniel Schwyn†, Kaan Akşit∗, Giorgio Corbellini∗, Thomas R. Gross†, Stefan Mangold∗

∗Disney Research †Dep. of Computer Science

8006 Zurich, Switzerland ETH Zurich, Switzerland

Abstract—Mobile phones can use their cameras and flashlight
Light Emitting Diodes (LEDs) to exchange messages with low-
complex Visible Light Communication (VLC) networks, but
these interfaces impose serious restrictions when used in a VLC
network. In this paper we discuss how to extend mobile phones
or tablets with a small peripheral device that is battery-free,
uses only passive components, and offers VLC capabilities at
the required data rate (kilobit per second). This device plugs
into the audio jack; on-board audio signal processing generates
the outgoing light signals as well as decodes the incoming light
signals. The device is powered from the phone’s audio jack
output signal, no additional battery is required. The audio signals
directly modulate light emissions of an LED. Incoming light is
detected by a photodiode and the generated electrical signals are
fed into the microphone input. This simple device enables use of
existing communication protocols and therefore makes it possible
to integrate mobile phones or tablets into existing VLC LED-to-
LED networks.

I. INTRODUCTION

Visible Light Communication (VLC) with Light Emit-
ting Diodes (LEDs) as transceivers enables short range low-
bandwidth networking of consumer devices like toys, smart-
phones, or tablets. We refer to this use as LED-to-LED
VLC networking [1], [2]. Devices use LEDs to emit light
and transmit data encoded into on-off patterns. The encoding
creates a slotted light pattern that is too fast to be perceived by
human users (no flickering, typically at 1 kHz or more). During
the off periods, the LEDs can be used as photodiodes to sense
incoming light, and as a result the LEDs receive data symbols
from other LEDs. Earlier papers described the software-based
synchronization, the data encoding with flicker avoidance, and
the required communication protocols [2].

In this paper we report on the design, implementation and
evaluation of a miniature low-cost passive device that can be
plugged into an audio jack connection of a mobile phone to
enable two-way VLC communication. Figure 1 illustrates how
a mobile phone exchanges data with a toy. The device uses an
LED and a photodiode to transmit resp. receive signals. The
use of a photodiode instead of a receiving LED is discussed in
Section II-B. When connecting such a device with a phone’s
headset audio jack, the phone can exchange data through light
at a data rate in the order of a kilobit per second in both
directions. The miniature VLC communication device uses the
audio output of the phone to drive an LED (transmission), and
the microphone input to receive from a photodiode (reception).

The audio jack device is battery-free and operates without
the involvement of a microcontroller. The audio signals needed

Fig. 1. (© Disney) VLC enabled toy remotely controlled by a smartphone
extension device plugged into the audio jack.

to modulate the LED are generated by software running on
the phone. The light sensed by the photodiode is also decoded
on the phone. The application software running on the phone
can generate data packets in real-time; this capability makes it
possible to run dynamic communication protocols directly on
the phone and enable transmission and reception of data with a
peripheral device that uses the LED-to-LED VLC networking
protocols referred to above.

A. Contributions

In this paper we report the following contributions:

• Hardware design of a VLC peripheral extension device
for smartphones using the audio jack as interface. The
device is battery-free and only powered and operated
through audio signals generated by the mobile phone.
Further, the device is equipped with a photodiode to
feed incoming modulated light as electrical signals
into the microphone input (Section II-B).

• Smartphone application software operating the audio
jack peripheral device through audio signal processing
only; there is no need for an additional microcon-
troller. Microphone input data is analyzed and decoded
in software and arbitrary data packets can be generated
in real-time using the peripheral’s LED as a commu-
nication front-end (Sections II-C and II-A).

• Evaluation of the designed hardware together with
application software running on iOS devices; results
for different host devices are reported (Section III).



ON OFF ON OFF ON OFF ON OFF

time

G D1 G D2 G S2S1

500μs

ONON

ONOFF

Fig. 2. Slotting structure of the LED-to-LED physical layer network protocol.
ON and OFF slots are alternating to provide illumination and communication
at the same time.

B. Related Work

Application scenarios and use cases for VLC-enabled
consumer devices have been demonstrated on several occa-
sions [3]–[5]. Smartphones communicating in LED-to-LED
networks without the aid of additional devices (using built-
in camera and flash light) have also been investigated [6], but
the placement of these building blocks may limit their use in
some scenarios. In this paper we extend the smartphone with
a peripheral device to increase flexibility, performance, and
stability for links between mobile devices and VLC-enabled
consumer devices. Extending smartphones with light sensors
through the audio jack interface has also been reported [7].
This system, however, allows only a one-way communication
(by light) whereas the system described here enables a full-
duplex two-way communication. Using a smartphone’s audio
jack as communication interface and hardware source has been
extensively investigated by various projects at the University
of Michigan [8], [9] which provided the foundation for com-
mercial hardware developments [10]. The hardware system
presented in this paper is based in part on this approach.

II. SYSTEM

This paper focuses on how to extend smartphones and
tablets with VLC functionality. Although these devices are
already equipped with a flash light (light emitter) and camera
(light receiver), which can be used for communication [6],
[11], they do not provide enough flexibility to work well to-
gether with other VLC-enabled devices. Smartphone operating
systems cannot support real-time scheduling, and control over
the flash light and camera is often restricted. These constraints
limit performance and stability of a VLC link. The system
described in the following sections is based on a passive
peripheral device that plugs into a smartphone’s audio interface
and can emit and receive light by using the phone’s audio
system. The peripheral device is battery-free and powered only
through the audio signals, yet the communication protocols are
handled without additional micro- or signal- processors – light
is directly modulated through audio signals generated in real-
time by the smartphone, and incoming signals are converted
by the microphone and analyzed by application software. The
system described can interact with existing VLC-enabled toys
or other consumer devices that implement the VLC protocols
developed for LED-to-LED networks, which are summarized
in the following section.

A. LED-to-LED communication protocols

The protocols consist of a physical (PHY) layer and
Medium Access Control (MAC) layer [2] based on a software-
only implementation for microcontrollers and uses only LEDs
as sender and receiver. The PHY layer is not only responsible

for communication but also for illumination. Since an LED
should always appear (to a human) as switched on, a slotting
structure, illustrated in Figure 2, is introduced. ON and OFF
slots are alternating with a period of 500 µs. During an ON slot
light is emitted so that the LED appears as always on. The OFF
slots are used to sense incoming light by reverse- biasing the
LED [12]. These slots are further divided into smaller intervals
(as shown in Figure 2) with the following functions: The
synchronization slots (S1,S2) in the beginning and at the end
are responsible for synchronization to the ON and OFF slots
of a communication partner. The guard intervals (G1,G2,G3)
prevent light leakage into the data intervals (D1,D2) in case
of small phase offsets. A zero symbol is encoded as light
emission during D1, and a one symbol is represented by light
emission during D2. The MAC protocol is based on CSMA/CA
as applied in the IEEE 802.11 standards and enables contention
based medium access for a network of VLC devices.

B. Peripheral Device Hardware

Audio signals are AC-coupled, hence it is not possible to
directly generate an on-off pattern to drive an LED. Further,
even with the loudest audio settings, the amplitude of the
audio output signal is still in the millivolts range (around
100 mV to 200 mV, depending on the device) and therefore not
large enough to emit light with reasonable intensity through
a standard LED. Our device uses a hardware design that is
based on University of Michigan’s Hijack project [8], [9]. The
schematics of the peripheral device’s Printed Circuit Board
(PCB) are shown in Figure 3, and the electronic parts are
listed in Table I. The schematics show a low-complex system
with only a handful of components, without the need to
include a microcontroller. The audio signals of the left and
right channel are joined together to increase the available
current and therefore also power. This can be seen as two
batteries in parallel but phase-synchronized AC coupled. The
signals amplitude is increased by the coupled inductors (T,
1:25 turns ratio). These inductors are a passive component that
increases the voltage at the same electric power and therefore
also decreases the current. The transformed signal’s amplitude
provides high enough voltage to drive an LED. Already with
this raw signal (e.g., shown in Figure 6) the LED emits light,
albeit with low intensity. To increase the light emission further,
the signal is rectified (Q1-Q4). This step makes it possible to
also use the negative parts of the sine waves to emit light
instead of reverse biasing the LED. The rectifier is built using
MOSFETs instead of diodes, since diode-based rectifiers suffer
from power loss (voltage loss of about 0.7 V per diode in path).
Finally, a capacitor is used to smooth and stabilize the LED’s
input voltage.

Instead off using exclusively LEDs (i.e., the LED is also
employed for reception as described earlier) the device uses
a photodiode to convert modulated light back to electrical
signals. Using the same LED to send and receive is not trivial
for this setup. There is a bias voltage of 2 V applied to the
microphone input and therefore, to switch between emitting
and receiving light, the LED needs to be attached and detached
from and to the microphone line. Such an arrangement intro-
duces a difficult problem (if to be solved without microcon-
troller). As we aim to keep the hardware as simple as possible,
we focus on how to modulate the light with the help of audio



T

RIGHT

GND

MIC

LEFT

PD

L

Q2

Q1

Q4

Q3

C

2.2 µF

R

4.7 k 

Fig. 3. Circuit diagram of the implemented peripheral device using only
a handful electronic components, without microcontroller and the help of
additional power sources.

TABLE I. ELECTRONIC PARTS KEY

Symbol Name

T Coupled inductors, 1:25

Q1,Q2 MOSFET, n-channel

Q3,Q4 MOSFET, p-channel

L LED

PD Photodiode

signals and to allow bidirectional communication with a low-
complex circuit. The peripheral device uses the microphone
as analog-to-digital converter (ADC) to measure the voltage
over the resistor (R). Incident light generates a photocurrent
in the photodiode (PD). The current is proportional to the light
intensity and can be measured as voltage drop over R. Figure 4
shows the assembled PCB with and without casing. The device
is still small, fits on a board of 1.7 by 2.7 cm, and requires no
battery; it can be built with only a handful of inexpensive
electronic parts.

C. Smartphone Software

The software part of the VLC system implemented for
iOS is responsible for generating the waveforms needed to
modulate the peripheral device’s LED to conform with the
protocol described in Section II-A. It also analyzes the incom-
ing signal from the photodiode and decodes it. The structure
of the system is depicted in Figure 5. There are three principal
modules: the main module, the sender module, and the receiver
module. Because sender and receiver use the same interface
to the hardware, they are partly implemented in a common
transceiver module. Data passed from the application to the
VLC main module is encapsulated in VLC frames and added
to a message queue. From there the frames are passed to the
sender in FIFO order. Packets that must be acknowledged are
retransmitted if a timeout occurs. After a packet is acknowl-
edged or the maximum retransmission count is reached, the
packet leaves the sender buffer and the application is notified
via a callback. Incoming messages are processed by a decoding
pipeline and finally delivered to the main module, which sends
an acknowledgement if necessary and delivers the data to the
application.

1) Sender: The core of the sender is a callback function
that is invoked by the hardware whenever it needs to output

Fig. 4. Custom designed PCB: a) 3-channel audio plug, b) coupled inductors
(T), c) rectifier (Q1-Q4), d) standard LED, e) photodiode, f) 3D-printed casing

Application
VLC Main 

Module

Sender Receiver
Audio Sample 

Decoder

Frame Decoder

synchronization filtered buffers

decoded bytes

decoded frames

outgoing frames

data to send

received data

Fig. 5. Software system diagram. Received signals are decoded by the Audio
Sample decoder and forwarded to the Frame Decoder where the payload is
identified. The VLC main module is in charge of assembling new data frames
that are handed over to the Sender module that generates the audio signals to
modulate the LED.

sound buffers. To ensure that the callback function returns
before a buffer underrun occurs, the templates for the three
types of data slots that occur in the VLC protocol (‘idle’, ‘bit 0’
and ‘bit 1’) are pre-built at start-up and only copied into the
target buffers. A template for a data slot always includes the
following ON slot. This is necessary as after transmission slots
(‘bit 1’ or ‘bit 0’) the LED needs to be switched off for a short
time in the next on slot for the brightness to appear constant.
iOS devices have a built-in sound processor that smooths quick
on-off patterns. It was found that with a sample rate of 48 kHz
and a signal frequency of 10 kHz this effect could be reduced
to an acceptable level while still delivering enough power to
the LED. Examples for generated audio signals based on the
calculated wave forms are shown in Figures 6 and 7.

2) Receiver: The receiver is also callback-based. Whenever
the hardware has input buffers ready it invokes a function that
pre-processes these buffers and copies them to user memory.
The buffers are then passed to the decoding pipeline. The first
stage of the pipeline is the physical decoding stage. It compares
the audio frames to a threshold with alternating sign. A value
below the negative threshold value is considered to originate
from incoming light, while a value above the positive threshold
means there was no light detected. A change between light and
no light is called a flip. The decoder then calculates the number
of frames between the flips. These run lengths correspond to
the on-off pattern of the sending LED. By analyzing these
patterns, individual bits can be decoded. The decoded bits
are accumulated to bytes and passed to the next stage. Due



ON OFF ON OFF ON OFF ON

500μs

OFFOFF

Fig. 6. Stereo audio signal generated by the smartphone’s audio system to
produce an ON-OFF emission pattern with the LED.

500μs

ON OFF ON OFF ON OFFOFF ON

D DDDC C C C

Fig. 7. Stereo audio signal during the transmission of a data packet. The
signal is switched on earlier or stays on longer to provide light for a data
slot at the beginning or in the end of an OFF slot (D). To compensate the
additional light output to avoid flickering, the audio signal is switched OFF
during the following ON slot (C). To ease reading the figure, an ON-OFF
legend is shown.

to a high level of noise in the signal (see Section II-C3),
short intervals cannot be reliably detected with a resolution
of only 24 frames per slot (due to the maximum sample rate
of iOS devices at 48 kHz). Thus the VLC decoding scheme
from Figure 2 needs to be simplified in the following way
(see also Table II): If there is no flip during the OFF slot,
no bit is detected. If there is a flip, to distinguish between
bits, the decoder detects in which half of the OFF slot a run
length above the positive threshold exists for about 13 frames
and assumes the spike to encode the symbol appears in the
other half. Furthermore, the inability to detect short intervals
prevents the system from being able to synchronize to another
VLC device (as it cannot detect the synchronization intervals
illustrated in Figure 2). As long as only one smartphone is
in a network, this limitation does not pose a problem as the
other VLC devices can synchronize to the smartphone’s on-
off pattern. The second pipeline stage decodes the protocol
frames. The decoding process works the same as for LED-to-
LED networks [2]: After a Start Frame Delimiter (SFD) is
detected, the headers are decoded and the CRC is calculated.
The decoded frames are then passed to the main module.

3) Signal feedback: Because of the simple circuitry that
is included in the peripheral device, the device suffers from
signal leaks into the receiver. This poses two problems: First,
there is a 10 kHz feedback signal during ON slots. It was found
that this makes it impossible to reliably detect the end of ON
slots as the wavelength of this signal is inside the tolerance
interval for GUARD1.

TABLE II. DECODING PATTERNS

Interval # frames idle bit 0 bit 1

GUARD1 5 OFF OFF OFF

DATA1 6 OFF ON OFF

GUARD2 2 OFF OFF OFF

DATA2 6 OFF OFF ON

GUARD3 5 OFF OFF OFF

Fig. 8. Signals as received by the Audio Sample Decoder. The dashed (red)
line indicates the run length pattern found. a) Receiving with sender off; b)
Receiving with sender on; c) Receiving with ON slots filtered; d) Sending –
only ON slots filtered; e) Sending – ON and OFF slots filtered.

Second, if the sender is active, the spikes in the data slots
that encode the symbols are also fed back to the receiver.
This also leads to the decoder losing synchronization with the
slot pattern. To prevent both of the problems the buffers are
preprocessed directly in the hardware callback: By keeping
track of the OFF slot sample times in the sender callback, the
corresponding incoming buffers are set to a value below the
negative threshold to mark them as ON. Similarly the buffers
corresponding to data slots where the sender is active are set to
a value above the positive threshold to mark them as OFF. As
OFF slots do not carry information and an incoming message
in the same slots as an outgoing would lead to a collision
anyway we lose no information this way. Figure 8 shows the
signals received by the Audio Sample Decoder.

4) Multithreading: To enable asynchronism and increase
performance, the system uses multi-threading. With Grand
Central Dispatch (GCD) iOS offers an easy to use framework:
Blocks of code can be dispatched to serial queues (serial means
the queue operates in a FIFO manner). The system then takes
care of the mapping of these queues to an suitable number of
worker threads. In the main module there are two serial queues,
one that handles incoming messages and one that dispatches
packets from the message queue to the sender. Furthermore
each stage of the decoding pipeline runs on its own serial
queue.



III. EVALUATION

The evaluation is conducted with a testbed consisting of
an iPhone 5S and an iPad mini (both equipped with Apple’s
A7 processor, running iOS 7) and a VLC device running the
protocols (on an Atmel microcontroller [13]) described in Sec-
tion II-A that uses only an LED as transceiver. The audio jack
peripheral device is platform-independent. Other smartphones
or tablets, even laptops or desktop computers (independent of
operating systems), could be used for this evaluation as long
as they provide a 3-channel audio jack plug with a matching
pinout. We focus on Apple’s iOS devices because of the well
documented audio API. All experiments are conducted in a
standard office space without special shielding from artificial
light and sunlight.

A. ACK timeout

The VLC device and smartphone both run a MAC layer
capable for data frame acknowledgments and retransmissions.
After transmitting a data frame, the transmitter waits for the
ACK timeout. If no ACK from the data frame’s destination
is received within this interval, the frame counts as lost and
the transmitter retransmits. This procedure is repeated until an
ACK reaches the sender or a fixed number of retransmissions
has happened. The firmware running on the VLC device’s
microcontroller is real-time and the ACK timeout can be kept
small since a receiving device is fast in processing a received
data frame and transmitting an ACK (within few milliseconds).
A short ACK timeout guarantees higher throughput perfor-
mance for a network consisting of only a few devices, as the
communication channel can be used more efficiently.

A smartphone operating system is not a system with real-
time guarantees and the main processor is used for several
different tasks at the same time. Also, it may take some time
to analyze incoming data from the audio jack and decode the
data packet. Further the audio signals needed to transmit an
ACK are generated on demand specifically for the received
data frame; this step takes additional time. Therefore the ACK
timeout of the VLC device must be adjusted to enable a
successful and optimized data exchange with a smartphone
using the audio jack extension device.

To find a proper value for the ACK timeout the following
experiment is conducted: the VLC device is generating data
packets (saturation) with the smartphone as destination. The
smartphone needs to send an ACK back to the transmitter.
If the ACK does not arrive on time, the data frame is
retransmitted, resulting in a drop in throughput. To find an
optimal value, the timeout is increased step by step. The same
experiment is also repeated for different packet sizes so see if
the processing time (on the smartphone) has any impact on the
delay. The results are shown in Figure 9. For timeouts of 45 ms
to 50 ms throughput is stable but not close to the theoretically
reachable maximum, meaning that the ACK arrives too late and
packets are always retransmitted. Between 50 ms and 70 ms
throughput is increasing slowly, but the plot also shows higher
error bars, leading to the conclusion that the ACK reaches the
destination sometime within the time windows and with higher
probability towards higher timeouts. For 71 ms and longer,
the error bars are disappearing again and throughput stays
stable. Measurements for higher timeouts are omitted since the

45 47 49 51 53 55 57 59 61 63 65 67 69 71
0

100

200

300

400

500

600

700

ACK timeout [ms]

s
y
s
te

m
 s

a
tu

ra
ti
o

n
 t

h
ro

u
g

h
p

u
t 

[b
/s

]

 

 

1 byte
10 byte

20 byte
50 byte

100 byte
150 byte

Fig. 9. Measurement results for a communication channel from a VLC device
to iPhone 5S. With an ACK timeout of 70 ms no packets are retransmitted
due to slow ACKs and throughput is about maximized.

throughput does not increase anymore. Also, the packet length
and therefore the decoding time on the smartphone seems not
to have any impact. In summary, the measurements show that
a delay of around 70 ms is optimal to maximize throughput
for a single communication link.

B. Distance measurements

To be useful for some use cases, the peripheral device
must be able to cover a certain communication distance and
achieve a stable and reasonable data throughput. Figures 10
and 11 show throughput measurements for data payload only,
for and iPhone respectively an iPad, for different packet sizes
and distances. Here, the VLC device acts again as saturation
packet generator. For the iPhone, the throughput stays stable
up to 25 cm at a maximum of 700 bit/s for a packet size of
150 byte. With the MAC protocols retransmission scheme in
place, it is also possible to achieve reliable communication up
to a distance of 35 cm, but with losses in throughput. The iPad
measurements show an increased communication range. This
is most probably due to a stronger audio amplifier included in
the iPad which increases the intensity of the light emissions.
With an iPad it is possible to achieve stable throughput in the
same order as for the iPhone at a communication distance of up
to 50 cm. These measurements show that the mobile device’s
audio system has also an impact on the possible communi-
cation ranges and additional measurements with smartphone
and tablets of different brands should also be considered.
In conclusion, the possible communication distance and the
achieved data throughput are sufficient for the indented use
cases (e.g., remotely controlled toy car).

C. Power consumption

Highest light emissions are achieved by using the loudest
audio output settings. This setup puts additional stress on
the device’s battery. Also, the computational power needed to
decode and create data packets cannot be neglected (although
checking the system monitor during measurements always
shows CPU utilization below 10 percent). Figure 12 shows
the battery level for both iPhone and iPad over time while
transmitting and receiving. The measurements show that the



5 10 15 20 25 30 35 40 45 50 55
0

100

200

300

400

500

600

700

distance [cm]

s
y
s
te

m
 s

a
tu

ra
ti
o

n
 t

h
ro

u
g

h
p

u
t 

[b
/s

]

 

 

1 byte
10 byte
20 byte

50 byte
100 byte
150 byte

Fig. 10. Measurement results for a communication channel from a VLC
device to iPhone 5S. Larger packet sizes result in higher throughput due to
smaller protocol overhead. The system operates reliably up to 25 cm.

5 10 15 20 25 30 35 40 45 50 55
0

100

200

300

400

500

600

700

distance [cm]

s
y
s
te

m
 s

a
tu

ra
ti
o
n
 t
h
ro

u
g
h
p
u
t 
[b

/s
]

 

 

1 byte

10 byte

20 byte

50 byte

100 byte

150 byte

Fig. 11. Measurement results for a communication channel from a VLC
device to iPad mini. The useful distance is increased by 20 cm compared to
the iPhone 5S.

battery lifetime is more than four hours for the iPhone, and
more than five hours for the iPad (due to higher battery
capacity). If we assume that the audio jack peripheral device
is not used more than 10% of the overall usage time, then the
peripheral device does not impact battery lifetime significantly.

IV. CONCLUSION

This paper reports on the design, implementation and
evaluation of a smartphone VLC extension device. It uses the
phone’s audio jack as interface and is operated by audio signal
processing. The key design constraints were low-complexity,
low-cost, battery-free operation, and interoperability with ex-
isting VLC systems. A simple and passive plug-in device is
presented based on only a handful of electronic components
powered buy audio signals. Its LED is modulated without
the help of an additional microcontroller, directly by audio
signals generated in real-time by the application. Evaluation
results demonstrate that the VLC protocols implemented in
software on the smartphone or tablet provide stable and reliable
communication over distances from 25 cm to 50 cm depending
on the device used (and its audio system). These results show

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

time [h:min]

b
a
tt
e
ry

 l
e
v
e
l

 

 

iPhone 5S iPad mini

Fig. 12. Battery lifetime for iPhone and iPad mini. Sender idle, screen turned
on. Battery life does not pose a problem for common use cases.

that smartphones or tablet can now be integrated into existing
VLC networks by the addition of this small passive component.

REFERENCES

[1] S. Schmid, G. Corbellini, S. Mangold, and T. Gross, “An LED-to-LED
Visible Light Communication System with Software-based Synchro-
nization,” in Optical Wireless Communication. Globecom Workshops

(GC Wkshps), 2012 IEEE, Dec. 2012, pp. 1264–1268.

[2] ——, “LED-to-LED Visible Light Communication Networks,” in Mo-

biHoc, 2013 ACM, Aug. 2013.

[3] S. Schmid, M. Gorlatova, D. Giustiniano, V. Vukadinovic, and S. Man-
gold, “Networking Smart Toys with Wireless ToyBridge and ToyTalk,”
in Poster Session, Infocom, 2011.

[4] G. Corbellini, S. Schmid, S. Mangold, T. R. Gross, and A. Mkrtchyan,
“LED-to-LED Visible Light Communication for Mobile Applications,”
in Demo at ACM SIGGRAPH Mobile 2012, Aug. 2012.

[5] S. Schmid, J. Ziegler, T. R. Gross, M. Hitz, A. Psarra, G. Corbellini, and
S. Mangold, “(In)visible light communication: Combining illumination
and communication,” in ACM SIGGRAPH 2014 Emerging Technologies,
ser. SIGGRAPH ’14, 2014.

[6] G. Corbellini, K. Akşit, S. Schmid, S. Mangold, and T. R. Gross,
“Connecting networks of toys and smartphones with visible light
communication,” IEEE Communications Magazine, vol. 52, no. 7, pp.
72–78, 2014.

[7] Luicom. (2014) Luciom, presentation at International CES in Las
Vegas. 10-July-2014. [Online]. Available: http://www.luciom.com/fr/
actus/ces-las-vegas-nevada-us-7-10-janvier-2014

[8] Michigan University. (2014) Project Hijack. 10-July-2014. [Online].
Available: http://web.eecs.umich.edu/∼prabal/projects/hijack/

[9] Y.-S. Kuo, S. Verma, T. Schmid, and P. Dutta, “Hijacking power and
bandwidth from the mobile phone’s audio interface,” in Proceedings

of the First ACM Symposium on Computing for Development, ser.
ACM DEV ’10. New York, NY, USA: ACM, 2010, pp. 24:1–24:10.
[Online]. Available: http://doi.acm.org/10.1145/1926180.1926210

[10] NXP Semiconductors. (2014) Smartphone Quick-Jack. 10-July-
2014. [Online]. Available: http://www.lpcware.com/content/project/
smartphone-quick-jack-solution

[11] C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using
a cmos camera sensor for visible light communication,” in Globecom

Workshops (GC Wkshps), 2012 IEEE, Dec 2012, pp. 1244–1248.

[12] P. Dietz, W. Yerazunis, and D. Leigh, “Very Low-Cost Sensing
and Communication Using Bidirectional LEDs,” in UbiComp 2003:

Ubiquitous Computing, vol. 2864, 2003, Book Section, pp. 175–191.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-39653-6 14

[13] Atmel, “8-bit Microcontroller with 4/8/16/32KBytes In-System Pro-
grammable Flash,” www.atmel.com, 2012.


