Supplementary: Assessing Learned Models for Phase-only Hologram Compression
1 Experimental Design and Training Protocol

To validate the effectiveness of neural implicit representation in hologram compression, this study systematically compares 3 approaches:
1. vanilla MLP as the baseline model; 2. ; 3. SIREN. Experiments utilize the central region of 512 X 512 pixel in the tested
phased-only holograms, with training samples generated through a patch sampling strategy producing four patch sizes (3 X 64 X 64 to
3 X 160 % 160) at 25% overlap through 10000 epochs. Each training with the weights learned from the previous patch. All models employ the
Adam optimizer (initial learning rate: le-4) with a step decay scheduler (gamma=0.5 every 5,000 iterations), MSE loss function, and early
stopping (threshold: 9e-6), trained on an NVIDIA RTX 4070 platform. Evaluation metrics include PSNR/SSIM, and model parameter count.
Additionally, for reconstructed hologram we add LIPIS to evaluate. With each configuration tested all patches to compute mean values and
statistical deviations. By balancing model complexity and patch dimensions, the experiments achieved a compression ratio of approximately
0.4, demonstrating efficient parameter utilization.

2 Model Architectures
2.1 vanilla MLP

Storage Mechanism:
o represent ReLU activation function, W; € R4*9-1 and b; € R are weight matrix and bias respectively.

Fure (X, y) = Woo (- Woa(Wid(x, y) +b1) - -) + by 1)
Positional Encoding: L = 10: Number of frequency bands in positional encoding

L-1

d(x,y) = @ [sin(anx),cos(2k7rx), sin(ZkJIy), cos(Zkﬂy)] (2)
k=0

2.2 SIREN [Sitzmann et al. 2020]

Storage Mechanism: w,: Global frequency scaling factor, ni,: Input dimension, U (a, b): Uniform distribution sampling.

PsrRen (X, y) = Wy 0 sino -+ - o Wy o sinoW;(x, y) ®)
Initialization Constraints: first layer
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other sine layers
wo =30 (5)
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This strategy supports the fidelity compression of high-frequency features of holograms while maintaining phase continuity by dynamically
adjusting the parameter scales of each layer.

2.3 [Chan et al. 2021]

Storage Architecture: L: Number of FiLM layers, d: Hidden dimension size, w; € R?: Frequency modulation vector for layer [, ¢; € R%:
Phase shift vector for layer [.

Frim (x, z) = Sigmoid (Wflﬁ(x, M(z))) (7)
Frequency Modulation:
L
Yem) = | sin(er - Wix + ¢1) (8)
I=1
Modulation Network:
Mz (w,¢) € R?H )
2.4 TAESD [Bohan 2023]
Compression Pipeline:
&(I) = ConvBlock® (Downsample®(I)) € R16764x64 (10)
D(z) = ConvBlock® (UpsampleS(z)) (11)

Latent Space Constraints:
z = Clamp (&(I)/3) x 3 € [=3,3]16x64x64 (12)
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3 Additional Experimental

Ground Truth TAESD (VAE) Vanilla MLP SIREN
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Figure 1: Four supplementary holograms are compressed to replicate the identical settings of the teaser image. (Source image:

mark byzewski) (Source image: Charles J. Sharp (1951-)) (Source image: Matt Jones mattrobinjones) (Source image: Ton Henry
binbin127)

In addition to the teaser image, we further validated the effectiveness of our approach by compressing and reconstructing four distinct
holograms (cactus, moth, dog, and elderly face) under identical settings. TAESD exhibited significantly inferior performance in both
reconstructed hologram quality (average PSNR: 4.6 dB, SSIM: 0.13, LIPIS: 0.70). vanilla MLP showed effective compression ability, achieving
reconstructed metrics of PSNR=25.87 dB, SSIM=0.72, and LIPIS=0.30. Moreover, and SIREN, further enhanced reconstruction
precision and perceptual alignment: attained PSNR=29.09 dB, SSIM=0.89, LIPIS=0.13, while SIREN achieved state-of-the-art
performance with PSNR=30.07 dB, SSIM=0.915, and LIPIS=0.07. Notably, SIREN consistently outperformed others in preserving more

accuracy information (e.g., moth wing patterns, facial wrinkles) and dynamic details, aligning with conclusions from our poster analysis.

This confirms the high potential of implicit networks in maintaining holographic phase-amplitude coherence under compression.
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