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AKŞIT1, *
4

1University College London, London, United Kingdom5

2University of California San Diego, San Diego, United States of America6

3ams OSRAM, Lausanne, Switzerland7

*k.aksit@ucl.ac.uk8

1. Detailed Experimental Results9

We evaluate our model performance in detail against work from [1] in Figure 1.10

We thank [2] for providing sample reconstructions from their model, as their code and11

weights are not yet publically available. We evaluate our test reconstructions against sample12

reconstructions from their model in Figure 2.13

Fig. 1. Comparison of our proposed models trained using the DiffuserCam MirFlickr

dataset [1]. We evaluate our performance on the test set containing 1000 images. Our

higher PSNR performance suggests that our model is able to extract more information

from each lensless measurement. Our model performs less consistently well on

perceptual image quality metrics such as SSIM and LPIPS, which we chose not to

optimize for.

2. Lensless Camera Prototype14

Figure 3 shows photographs of our lensless camera and the display used to capture paired training15

examples. Figures 4 and 5 illustrate our how our calibration software captures paired training16

examples. Figure 6 demonstrates test reconstructions from our camera.17

3. Learned models from Zero Initialization18

Our proposed work initializes \: with the point spread function measured by shining a point light19

source along the optical axis of the lensless camera. To show that our model is able to estimate a20

physical PSF from data, we show the values of \: after training when \: is zero-initialized in21

Figure 7.22
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Fig. 2. Comparison of our proposed models against sample reconstructions provided

by [2]. Our results are similar in terms of reconstruction quality, with our mixed-channel

model yielding a slightly higher PSNR in most cases. Close inspection suggests that

our model suffers from fewer artifacts as a result of more closely emulating the physics

of light transport. However, we believe that a more detailed comparison is needed in

order to establish which model offers superior performance in terms of reconstruction

speed and quality.



Fig. 3. Photos of our lensless camera prototype. The camera is aimed at the display to

capture paired training examples. The paired training examples are used to train our

learned image reconstruction model.

Fig. 4. Illustration of our homography estimation routine. The on-axis PSF is recorded

by illuminating a point light source in the center of the display. An image of circles is

then shown on the display and is reconstructed using the recorded PSF and FISTA [3].

The centers of these circles are then found using a Hough transform [4], and the

difference in circle centers between the source image and the captured image are used

to estimate the homography H.
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Fig. 5. Illustration showing the flow of data from our calibration software. Images are

shown on the display and are recorded by the camera as lensless measurements. The

estimated homography H is applied to each ground truth image to match the lensless

camera’s view of the display. We use the Div2K dataset [5] to capture paired training

examples.



Fig. 6. Test measurements reconstructions from our prototype camera. We compare the

results of unregularized FISTA [3] against our RGB model trained with paired training

examples. Our unrolled model is able to reconstruct usable images at least one order of

magnitude faster. The amount of noise in the unsupervised reconstructions suggests

that our camera has a poor signal to noise ratio, this is likely due to the characteristics

of the diffuser and the imaging sensor.
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Fig. 7. Results of training our RGB model with zero initialization of \: . The top

row shows the experimentally measured PSF from the DiffuserCam MiRFlickr dataset

by [1]. The second row shows \
1...5

:
. The third row shows test images recovered

using these models, which have a slightly higher test PSNR than initialization with

the calibrated PSF (22.22dB). We can see that \1

:
resembles a strong similarity to the

measured PSF, while the other values \2...5

:
are less physically interpretable.


