
Unrolled Primal-Dual Networks for Lensless Cameras

OLIVER KINGSHOTT, University College London, United Kingdom

NICK ANTIPA, University of California San Diego, United States of America

EMRAH BOSTAN, ams OSRAM, Switzerland

KAAN AKŞIT, University College London, United Kingdom

Fig. 1. Comparison of our unrolled primal-dual network with state of the art. Intensive post-processing of lensless images cannot correct the model error,

over-smoothing images and removing important features, such as text. We propose to replace classical lensless reconstruction methods with our physically-

informed unrolled primal-dual model, where the model includes a series of learned forward and adjoint models (pseudo point-spread functions and their

inverse). As a result, our work can produce plausible images and recover additional features while reducing the need for deep post-processing networks such

as U-Nets [Ronneberger et al. 2015] (Source image courtesy MIR Flickr [Huiskes and Lew 2008]).

Conventional image reconstruction models for lensless cameras often as-

sume that each measurement results from convolving a given scene with a

single experimentally measured point-spread function. These image recon-

struction models fall short in simulating lensless cameras truthfully as these

models are not sophisticated enough to account for optical aberrations or

scenes with depth variations. Our work shows that learning a supervised

primal-dual reconstruction method results in image quality matching state

of the art in the literature without demanding a large network capacity. This

improvement stems from our primary finding that embedding learnable

forward and adjoint models in a learned primal-dual optimization frame-

work can even improve the quality of reconstructed images (+5dB PSNR)
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compared to works that do not correct for model error. In addition, we built

a proof-of-concept lensless camera prototype that uses a pseudo-random

phase mask to demonstrate our point. Finally, we share the extensive evalu-

ation of our learned model based on an open dataset and a dataset from our

proof-of-concept lensless camera prototype.
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1 INTRODUCTION

A lensless camera uses a thin mask in place of a conventional lens.
Masks can manipulate phase, amplitude, or the entire complex light
field of a given scene. Unlike lenses in conventional cameras, these
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masks can be placed near the imaging sensor, enabling thinner and
lighter imaging systems. Additionally, lensless cameras offer the
benefits of compressed imaging [Fergus et al. 2006; Liutkus et al.
2014], embedding higher dimensional scene information such as
depth from a single capture. To benefit from these qualities, experts
typically model lensless cameras as a linear system and recover
images computationally by solving the inverse problem.

Pseudo-random phase masks have demonstrated adequate perfor-
mance for lensless photography [Antipa et al. 2018; Boominathan
et al. 2020]. Unfortunately, image reconstruction typically requires
computationally expensive and slow iterative reconstruction al-
gorithms (e.g. ADMM [Antipa et al. 2018] and FISTA [Beck and
Teboulle 2009]). To address this, a growing number of works use
data-driven Convolutional Neural Networks (CNNs) to improve the
speed and quality of lensless image reconstructions [Bae et al. 2020;
Barbastathis et al. 2019; Sinha et al. 2017]. A typical CNN with a
limited receptive field size fails to accurately model the light trans-
port of the imaging system [Goodman 2005], leading to learned
models which fail to reconstruct lensless images accurately and
efficiently. Recent literature proposes neural networks that include
a physical model with a large receptive field [Boominathan et al.
2020; Monakhova et al. 2019]. These neural networks typically use
a single-shot calibration measurement of the Point-Spread Func-
tion (PSF) to represent the physical model of the imaging system.
However, without the use of precisely engineered masks [Boomi-
nathan et al. 2020; Tseng et al. 2021], image formation in lensless
cameras cannot be fully expressed by a single PSF model [Yanny
et al. 2020]. This model mismatch can lead data-driven regulariz-
ers to hallucinate missing features or create overly smooth images.
Therefore, the development of models that can correct for model
error without increased computational complexity or extensive cal-
ibration is of critical importance for the widespread adoption of
lensless imaging. Our proposed method replaces ADMM with a
learned optimization scheme, improving image quality by reducing
model error as opposed to intensive post-processing. The result is a
versatile deeply-calibrated lensless imaging architecture that avoids
model error in the resulting reconstructions. We provide the results
of numerous experiments comparing our method against existing
image reconstruction algorithms for lensless cameras.

Specifically, our work provides the following contributions:

• Learned primal-dual for lensless imaging. We show for the
first time that a modified learned primal-dual optimization
framework [Adler and Öktem 2018] can recover images from
a lensless camera using a pseudo-random phase mask.
• Learned forward-adjoint model. We embed additional linear
operators within our learned primal-dual framework. These
learned forward-adjoint models are jointly optimized with
the rest of our model using the same paired training exam-
ples. We show that our extended model provides a significant
visual quality enhancement in our image reconstructions.
Our method promises reductions up to 50% in reconstruction
error while using a fraction of the parameters compared to
previous works.
• Lensless camera prototype. We build a proof of concept lens-
less camera to test further and demonstrate the performance

of our model in an actual lensless camera with a pseudo-
random mask. We provide an automatic calibration routine
that can train our model without the need for an additional
camera with a conventional lens.

Limitations. When compared to models that use a single cali-
brated forward model, our method yields an improvement in the
quality of lensless image reconstructions. However, a thorough in-
vestigation is required to identify explainable links between our
learned forward models and physically accurate models in the fu-
ture. In our experiments with our in-house built camera, we ob-
serve a lesser quality in image reconstructions when compared
with the state of the art datasets [Boominathan et al. 2020; Mon-
akhova et al. 2019]. We believe these originate from the fact that the
off-the-shelf diffuser we use does not fully resemble the case that
we draw our inspiration from [Antipa et al. 2018]. However, our
work significantly improves the image quality both on benchmark
datasets [Monakhova et al. 2019] and our in-house built camera.

2 RELATED WORK

We introduce a novel image reconstruction method for lensless
cameras. Here, we provide a brief survey of prior art in lensless
cameras, unsupervised lensless image reconstruction methods and
learned image reconstruction techniques. Curious readers can read
more about lensless cameras through the work by Boominathan et
al. [Boominathan et al. 2022].

2.1 Lensless cameras

The idea of building cameras without requiring optical lenses has
been a long-standing vision for scientists [Barker 1920] as opti-
cal lenses can be bulky, hard to manufacture with great precision,
and are typically focused at one plane at a time. The advent of
ubiquitous high performance computing and the promise of high
dimensional capture has led to a resurgence of interest in lensless
cameras. Mask based lensless cameras have been demonstrated with
coded illumination [Zheng and Asif 2021], coded apertures [Asif
et al. 2017; Horisaki et al. 2020], amplitude-only diffraction gratings
(e.g., pinhole arrays [Anand et al. 2020]), photon sieves [Yöntem
et al. 2018], separable amplitude masks [DeWeert and Farm 2015],
Fresnel Zone plates [Wu et al. 2020]), phase-only diffraction grat-
ings [Antipa et al. 2018; Bernet et al. 2011] and metalenses [Tseng
et al. 2021]. Additionally, the mask used in a lensless imaging sys-
tem can also be co-designed with an algorithm that recovers scene
information [Tseng et al. 2021]. The depth-varying PSFs of phase
mask imaging systems can augment existing 2D imaging sensors
with near-field 3D imaging [Antipa et al. 2018]. Alternatively, single-
pixel detectors combined with coded illumination patterns can be
used for time-based imaging [Huang et al. 2013; Satat et al. 2017].

In our work, we show a lensless camera prototype for experimen-
tal validation. Our prototype is similar to the one demonstrated by
Antipa et al. [2018] but differs in implementation details, which we
go through in our implementation section.

2.2 Unsupervised Lensless Image Reconstruction Methods

The large spatial extent of the PSFs used in phase-mask based lens-
less cameras necessitates a cropped convolution model, owing to
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the limited size of the imaging sensor. By modelling the convolution
and the sensor crop as separable sub-problems, the Alternating-
Direction Method of Multipliers [Antipa et al. 2018] can be used
to recover images using convex optimization. However, modelling
field-varying aberrations is cumbersome process using convex opti-
mization approaches, typically requiring a 10x or greater increase
in computational cost [Yanny et al. 2020].

2.3 Learned Lensless Image Reconstruction Methods

The advent of learning-based approaches eases the computational
burden of lensless image reconstruction. The work by Monakhova
et al. [2019] unrolls five iterations of ADMM and uses a large U-
Net [Ronneberger et al. 2015] to improve perceptual quality. How-
ever, this approach has a limited ability to correct for model error in
the resulting reconstructions, relying on intensive post-processing
to achieve plausible reconstructed images. To our knowledge, the
work by Rego et al. [2021] demonstrates the first attempt at imple-
menting a blind deconvolution model for lensless cameras without
involving PSF measurements. Our model requires re-training for
each phase mask, yielding higher quality lensless reconstructions
at the cost of portability. Khan et al. [2020] propose a fast learned
reconstruction model for lensless cameras. By improving boundary
conditions inherent in the sensor crop, they show that they can
recover realistic images in a single step without the need for an
iterative model. Our work embeds multiple large kernels within an
unrolled iterative model to better compensate for optical aberrations.
Zeng and Lam [2021] tackles model mismatch caused by imperfect
modelling mainly due to spatially-varying PSFs with varying eccen-
tricity. They achieve this by learning residual blocks during each
unrolled iteration of ADMM, which are fed into the U-Net denoiser
to correct for model error. We show that our method yields accurate
intermediate reconstructions by separating the role of the denoising
network from the model reconstruction network. Most recently,
Yanny et al. [2022] have proposed pairing multiple Wiener filters
with convolutional neural networks to recover accurate images in a
lensless microscopy application. However, their method requires a
experimental verification for phase-mask based lensless cameras as
it targets microscopy.

In conclusion, existing learned methods depend both on accurate
PSF calibration and additional training data to develop a suitable im-
age prior. Our method makes better use of supervision by diverting
trainable parameters towards improving the underlying physical
model of light transport. By directly correcting for model-error, our
method produces accurate intermediate reconstructions that are
more consistent with images captured by a lensed camera. To our
knowledge, our learned method delivers results that are on-par with
the current state of the art in terms of speed and image quality,
while offering greater parameter efficiency than previous works.

3 METHOD

We first introduce the forward model for a phase-mask based imag-
ing system. We then present our proposed lensless image recon-
struction model. Finally, we illustrate our deep calibration procedure
which captures the necessary dataset for our supervised model-
based reconstruction.

3.1 Problem Formulation

We assume that measurements from our imaging system, b, are the
result of a linear transformation A applied to points in the scene x,
with some additional noise n :

b = Ax + n, (1)

where b and x are vectors.
Each column of A corresponds to the linear transformation of

a single point in the scene, also known as PSFs. Storing PSFs for
each point in memory is a demanding task. Rather than storing all
PSFs, using an aperture enables the approximation ofA as a cropped
convolution with a PSF measured along the optical axis [Antipa
et al. 2018]

b = C(PSF ∗ x) + n (2)

. Here, ∗ represents a circular convolution and C represents a crop
down to the size of the imaging sensor. The lateral shifting of the
large PSF outside of the bounds of the image sensor necessitates
this cropped convolution model. A single experimentally measured
PSF is typically used to reconstruct images using the described
convolutional forward model [Antipa et al. 2018; Monakhova et al.
2019]. The on-axis PSF is typically measured by shining a point
light source along the optical axis of an existing system. Under the
assumption that b is the result of a cropped convolution with an
experimentally measured PSF, we recover an estimate of the scene
x by solving a regularized optimization problem:

x̂← argmin
x

1

2
∥C(PSF ∗ x) − b∥22 + _R(x), (3)

where R is a regularization function that penalizes unlikely solu-
tions in the presence of noise, with _ controlling the amount of
regularization with respect to the data fidelity term.

In this work, we seek to improve the quality of lensless imaging
by embedding learnable convolution kernels that are the same size
as the PSF within a learned optimization scheme.

3.2 Learning Large Kernels with Physically Informed

Networks

Access to paired training examples unlocks a vast landscape of
learned reconstruction techniques. Purely data-based architectures,
such as U-Nets, typically require large numbers of paired training
examples and suffer from poor generalization on unseen data. These
limitations can be overcome by incorporating knowledge of physical
processes, such as light transport [Kavaklı et al. 2022], into the
neural network architecture. Physically informed networks such
as learned primal-dual [Adler and Öktem 2018] are highly data-
efficient, requiring only a moderate number of training examples,
and tend to generalize well to unseen data. With access to paired
training examples, but without knowledge of the true linear system
A, we propose to train a reconstruction network G with the goal
of minimizing the average mean squared distance to ground truth
reconstructions from a lensed camera xgt:

L"(� := ∥G\ (b) − xgt∥
2
2 (4)

In the next section, we explain the design of �\ . As the focus of
our work is to recover the signal encoded in b, we exclusively use
mean-squared error as our loss function.

3
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Fig. 2. Unrolled Primal-Dual network architecture for reconstructing lensless images. Our model accepts inputs in the form of a batch of RGB lensless measure-

ments with a predetermined width and height. The blue box illustrates our dual update step, where variables in the measurement domain ({~8 , ~8−1, 1 } ∈ . )

are concatenated channel-wise before passing through two convolutional layers parameterized by \8
3
. The yellow box illustrates our primal update step, where

each variable in the measurement domain ({G8 , G8−1 }) is likewise concatenated and convolved with two layers parameterized by \8? . Our forward-adjoint

model tensor, \: , which is initialized with the value of a PSF measured using a point light source, is also optimized at each epoch. Finally, our trained model

reconstructs images from lensless measurements.

3.2.1 Learned Primal Dual with a Physical Model. We propose a
modified learned primal-dual architecture as our learned reconstruc-
tion network G (Equation 4). Figure 2 illustrates how our data and
parameters flow through the network. We extend the original work
by Adler and Öktem [2018] in three ways. First, we replace the for-
ward operator T and its adjoint mT with the cropped convolution
operation of our lensless camera in Equation (2):

T (G) ← C(PSF ∗ G)

mT (~) ← P(PSF★~),
(5)

where P represents zero padding up to twice the size of the imaging
sensor, and★ represents circular cross-correlation. G ∈ - and ~ ∈ .
are primal and dual variables respectively, with the former belonging
to the domain of reconstructed images- and the latter in the domain
of lensless measurements . .
Second, we allow the PSF to be optimized during training. We

initialize \: ← PSF, allowing the network to modify the physical
PSF during training:

T (G) ← C(\: ∗ G)

mT (~) ← P(\: ★~),
(6)

Finally, we wish to learn multiple kernels to improve our esti-
mate of the true physical system. We choose to learn = convolution
kernels, equal to the number of primal and dual variables. Let

x =

[

G1 G2 . . . G=
]

y =

[

~1 ~2 . . . ~=
]

,

): =

[

\1
:

\2
:

. . . \=
:

]

,

(7)

then each primal and dual variable G1...=, ~1...= is convolved or cross-
correlated with its own learned kernel \1...=

:

T (x) ← C(): ∗ x)

mT (y) ← P(): ★ y) .
(8)

The above modifications result in a variation of the learned primal-
dual algorithm with the following update steps:

y8 ← Γ\8
3
(y8−1,T (x8−1), b)

x8 ← Λ\8?
(x8−1, mT (y8 )),

(9)

where Γ\8
3
, Λ\8?

are small convolutional neural networks that are

parameterized by each unrolled iteration 8 ∈ 1 . . . 10. At the end
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of the unrolled iterations, the variable G1
10

is chosen as our best
estimate of x̂.

3.3 Per-channel & Mixed-channel models

To improve the performance of our method against baseline image
quality metrics such as PSNR and SSIM, we propose an additional
model based on higher dimensional feature maps as opposed to RGB
images. Specifically, we replace : learned RGB kernels with 3 × :

single channel kernels, allowing for cross-channel communication
across feature maps. This results in a model with an increased signal-
to-noise performance at the cost of a decrease in subjective color
accuracy. We provide a visual comparison of these two models and
quantitative metrics in our results section.

4 IMPLEMENTATION

In this section we document the development of our own lensless
camera as shown in Figure 1. Additional details are provided in the
supplementary material.

Camera Design. We use a Raspberry Pi High-Quality camera
connected to a Raspberry Pi Zero W. This specific camera features a
removable lens housing which we replaced with our own 3D printed
design. Following Monakhova et al. [2019], we used a 0.5 degree
engineered diffuser as our mask, placed ∼10mm away from the
image sensor. Our 3D printed housing is also illustrated in Figure 1.
Our custom housing ensures that the optical element is placed at
the desired distance from the imaging sensor, and contains space
for an optional infrared filter.

Data Capture. To capture a training and test dataset, we place our
camera ∼15cm away from a 5.5 inch OLED display. We illuminate a
5x5 square grid of pixels in the center of the display and capture the
resulting image tomeasure the on-axis PSF.We then use FISTA [Beck
and Teboulle 2009] to reconstruct a test image. This test image is
used to estimate a homography that warps each ground truth image
to match the perspective of the lensless camera. Automated software
shows a variety of images from the DIV2K dataset [Timofte et al.
2018], capturing 8000 training images and 1000 test images.

5 EVALUATION

We first present the results of comparing our method against two
central state-of-the-art work that uses DiffuserCam dataset [Mon-
akhova et al. 2019; Zeng and Lam 2021]. We additionally perform
ablation studies to determine the contribution from each component
in our method on reconstructed image quality. Finally, we verify
our method using our hardware prototype.

5.1 DiffuserCam results

We compare our model’s results against the work that uses Diffuser-
Cam dataset [Monakhova et al. 2019] in Table 1, where the number
of parameters used, the size of training and testing examples, pro-
cessing time, and image quality are considered.

Our results suggest that our proposed method improves the qual-
ity of images reconstructed from measurements captured by a lens-
less camera. This is supported by qualitative results in Figure 3,

which appear to reproduce features that are more faithful to the
original ground truth images.

5.2 Ablation Studies

Disabling U-Net Denoiser. To further confirm that the quality
of our reconstructions has increased as a result of correcting for
model error, we measure the quality of intermediate reconstructions
without the use of a U-Net for denoising. We show our qualitative
results in Figure 4 and quantitative results in Table 1. When our U-
Net is disabled, the resulting images are noisy but are faithful to the
ground truth images. Our intermediate reconstructions demonstrate
that our model-based reconstruction network performs the bulk of
the work in producing usable lensless reconstructions.

Effect of learning multiple models. We ran an additional study to
quantify the effect of decreasing the number of learned models from
5 to 1. We include quantitative results in Table 1 and present recon-
structed images from our reduced model in Figure 4. Decreasing the
number of learned models from 5 to 1 decreases the resulting image
quality after post-processing by ∼2dB.

5.3 Prototype results

We additionally compare the results of our learned model using a
prototype camera built in the lab.We present sample reconstructions
in Figure 5 and provide additional reconstructions in our supple-
mentary material.

6 DISCUSSION

Comparison to classical methods. Our proposed models are end-
to-end differentiable. They are trained to learn an unrolled iterative
reconstruction algorithm, a physically informed model, and a suit-
able image prior. While our model appears to produce accurate
intermediate reconstructions, it is difficult to discretely map each
learned component of the model to a specific component existing
classical methods. One line of future work could be to establish
whether embedding learnable physical models within a classical
variational method can achieve similar results. A forward model
that is learned independently of image priors and a chosen recon-
struction algorithm could be used to evaluate the data fidelity of
reconstructed images against their lensless measurements.

Comparison to learned methods. When compared to learned meth-
ods that use a fixed PSF calibration measurement, our method is able
to reconstruct images that more closely resemble images captured
by a lensed camera. It is clear that the improved performance of our
method is achieved by redistributing model parameters away from
deep neural networks and towards the underlying physical model of
light transport in lensless cameras. However, the exact mechanism
through which our model improves performance against existing
learned methods is unclear. It is possible that our model could be
correcting for field-varying aberrations that are not captured by
a single on-axis calibration measurement. However, we note that
our proposed methods lack any explicit mechanism to apply each
learned model to a specific spatial region. Finally, we note that our
claim of improved data fidelity can only be measured implicitly by
comparing our reconstructions with a lensed camera. In future work,

5
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Fig. 3. Comparison of reconstructed test images against the ground truth images. We compare our method against MMCN [Zeng and Lam 2021]. MMCN is

based on five unrolled iterations of ADMM with additional residual blocks to correct for model error. Our per-channel model (RGB) improves subjective color

accuracy while our mixed-channel model (Mixed) recovers higher frequency content. The primary feature of both models is that multiple large kernels are

learned to correct for model error.
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Fig. 4. Comparison of our learned model-based reconstruction networks against unsupervised ADMM (converged). U-Net denoising was disabled to show

that our intermediate reconstructions consist of images that are more faithful to the ground truth data. Learning additional kernels appears to improve

accuracy while yielding results faster than classical methods. We reason that our network prioritises consistency with the true physical model, resulting in

fewer artifacts.
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Method PSFs U-Net PSNR LPIPS Parameters Runtime (ms) Training Examples Iterations

ADMM 1 RGB (fixed) 11.97 0.60 - 1190 0 100
Le-ADMM 1 RGB (fixed) 11.89 0.57 20 50 100 5
Le-ADMM-U 1 RGB (fixed) ✓ 20.46 0.37 10.6M 55 24,000 5

Ours (RGB) 1 RGB (learned) 16.74 0.54 0.4M 74 9,000 10
✓ 21.47 0.43 1.2M 77 9,000 10

Ours (RGB) 5 RGB (learned) 16.91 0.51 2.0M 80 9,000 10
✓ 23.48 0.40 2.7M 88 9,000 10

Ours (Mixed) 15 (learned) 19.00 0.48 2.0M 82 9,000 10
✓ 25.34 0.35 3.8M 84 9,000 10

Table 1. Comparison of our models against previous work by Monakhova et al. [2019]. Our model achieves produces modestly accurate reconstructions

quickly without the use of a large U-Net, at the cost of learning additional large kernels \: . These kernels occupy the majority of our parameter space. Adding

a small U-Net to our models improves reconstruction quality further. Increasing the number of learned kernels improves PSNR by ∼2dB when combined with

U-Net denoising, with cross-channel denoising adding another ∼2dB.

Fig. 5. Reconstructions from our lensless camera prototype trained using

our RGB model. Our optical element consists of a thick holographic diffuser

(0.76mm) with bulk sca�ering, leading to a degradation in image quality.

we would like to use measured or simulated field-varying PSFs to
design robust models that can explicitly correct for field-varying
aberrations without the need for manual calibration.

Color Accuracy. Our two proposed models highlight a potential
trade-off between the recovery of high frequency details and color
accuracy in phase mask cameras. Allowing the mixing of color chan-
nels appears to increase the frequency content of recovered images.
However, our informal subjective opinion is that our per-channel
model is able to reproduce color more accurately. We suspect that
our per-channel model is vulnerable to color fringing artifacts in-
troduced by the chosen phase masks. Future work could investigate
treatment through the use of additional loss functions (such as those
proposed by Heide et al. [2013]) or through improved phase mask
design [Boominathan et al. 2020].

7 CONCLUSION

Unconventional camera designs with thin masks in place of con-
ventional lenses offer freedom from the constraints of traditional
optics. However, the speed of reconstruction and image quality in
mask-based lensless camera designs remains a significant drawback.
We argue that neural networks with embedded physical priors for
lensless imaging can help to counter this drawback. We show that
such an approach can provide on-par image reconstruction quality
without demanding extensive resources in training. Thus, we hope
that our work can further develop performant and interpretable
methods for lensless image reconstruction.
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