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Abstract: Computer-Generated Holography (CGH) algorithms often fall short in matching7

simulations with results from a physical holographic display. Our work addresses this mismatch8

by learning the holographic light transport in holographic displays. Using a camera and a9

holographic display, we capture the image reconstructions of optimized holograms that rely10

on ideal simulations to generate a dataset. Inspired by the ideal simulations, we learn a11

complex-valued convolution kernel that can propagate given holograms to captured photographs12

in our dataset. Our method can dramatically improve simulation accuracy and image quality in13

holographic displays while paving the way for physically informed learning approaches.14

© 2021 Optical Society of America15

1. Introduction16

The future of human-computer interactions [1] demands technologies that can display life-17

like three-dimensional visuals. An emerging trend, Computer-Generated Holography (CGH),18

promises to deliver such realistic visuals in the next-generation displays [2]. However, CGH19

algorithms often fall short of achieving high image quality in real life.20

The traditional CGH algorithms such as Gerchberg-Saxton method [3] or recently trending21

approaches such as Stochastic Gradient (SGD) based differentiable methods [4–6] can deliver an22

outstanding image quality in the simulation environments. However, in an actual holographic23

display with phase-only modulation, holograms optimized or learned using these ideal holographic24

light transport models often fail to deliver the same image quality. Identifying causes of mismatch25

and bridging the gap between the image qualities of simulations and actual experiments are26

growing scientific research trends in the holography community.27

The traditional solutions [7] to address the mismatch aims to find complex residual values that28

can be added as a regularization term to the ideal holographic light transport [6] or the complex29

hologram [5]. These techniques to regularize holographic image reconstruction models [5, 6]30

are powerful and effective in practice. In the meantime, researchers have also garnered interest31

to learn the hologram generation process using deep learning [5, 8]. However, their proposed32

solutions often yield highly complex algorithmic structures and sometimes require a physically33

demanding experimentation routine. These complex algorithmic structures involve learning34

components such as Generative Adversarial Networks (GANs) that are not straightforward in35

tuning and training [6], multi-layer perceptrons that model the nonlinear response of an SLM,36

which may carry lesser semantic meaning for an optical scientist [5] or characterizing aberrations37

with Zernike polynomials that requires careful experimentation [5,9–12]. We ask ourselves if the38

demand in experimentation load and complex nature of algorithms can be avoided while optical39

scientists can get more hints towards understanding imperfections in actual holographic displays.40

With that question in mind, we aim for deriving a new and refined CGH algorithm to improve41

image quality in actual holographic displays.42

This work argues that a tailored holographic light transport model for a target holographic43

display can account for optical aberrations and bridge the gap between simulations and actual44

holographic displays. We also argue that such a model can avoid intensive experimentation45



requirements in display calibration. For this purpose, we propose to learn a single complex-valued46

point spread function that helps us to propagate input phase-only holograms to the target image47

plane. Thus, our holographic light transport model convolves an input phase-only hologram48

with a learned complex-valued point spread function to get to the physically accurate image49

reconstructions in simulations for a target holographic display. The learning process involves50

comparing image reconstruction in simulations against experiments using a camera with an51

actual holographic display. Like any other learning process, we must have a set of data composed52

of input phase-only holograms and their corresponding image reconstructions in an actual53

holographic display. We collect such a dataset from our proof-of-concept display prototype using54

a camera and an ideal holographic light transport based hologram optimization method that is fully55

differentiable. We show that our learned holographic light transport can dramatically improve56

simulation accuracy and final image quality in our holographic display. Our key contributions57

are summarized as follows:58

• Learned holographic light transport. We propose a learned approach for holographic light59

transport to bridge the gap between simulations and experimentation. Our method learns60

a single complex convolutional kernel to reconstruct images in simulation similar to the61

real experiments. Our implementation is fully differentiable. We show that image quality62

results from an actual holographic display can be enhanced with our method while the63

simulations become highly accurate.64

• Holographic dataset from a proof-of-concept holographic display. In order to be able to65

train and derive a single complex convolutional kernel, we build a phase-only holographic66

display. Then, we capture a series of photographs of holographic image reconstructions67

resulting from holograms optimized using the ideal holographic light transport.68

In the following sections, we will first introduce a standard ideal holographic light transport69

model. Then, we will provide the details of our experimental setup. Finally, we will introduce our70

technique in learning and provide quantitative results of our method while comparing it against71

the ideal case.72

2. Optimizing holograms with ideal holographic light transport73

The topic of light transport plays a crucial role in formulating the basis of various domains74

including traditional computer graphics [13], architecture [14], biomedical imaging [15], non-75

line-of-sight imaging [16], three-dimensional printing [17], visible light communications [18],76

holographic recording [19], computational displays [20], eye prescription correction [21], eye-77

gaze tracking [22], ophthalmology [23] and many more. Although we cover only display78

technologies in this work, an accurate representation method of light transport can potentially79

pave the way towards enhancements in many other highlighted applications.80

Light transport models used in CGH bases on Rayleigh-Sommerfeld diffraction integrals [24].81

This diffraction integral’s first solution, the Huygens-Fresnel principle, is expressed as follows:82

D(G, H) =
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where resultant field, D(G, H), is calculated by integrating over every point across hologram plane83

in XY axes, D0 (G, H) represents the optical field in the hologram plane for every point across XY84

axes, A represents the optical path between a selected point in hologram plane and a selected85

point in target plane, \ represents the angle between these points, : represents the wavenumber86

( 2c
_

) and _ represents the wavelength of light. In this model, optical fields, D0 (G, H) and D(G, H),87

are represented with a complex value,88

D0 (G, H) = �(G, H)4 9 q (G,H) , (2)



where A represents the spatial distribution of amplitude and q represents the spatial distribution of89

phase across a hologram plane. To simplify our description, we can express the Huygens-Fresnel90

principle as a superposition of diverging spherical waves originating from a hologram [25].91

Perhaps one can also think of the Huygens-Fresnel principle as stamping a complex point-spread92

function on a target image plane for each point of a hologram while weighting each stamp with93

its amplitude and phase from its origin.94

Calculating Huygens-Fresnel approximation by visiting each point on a hologram one by one95

would consume a large computation and power budget while being slow in processing. Common96

approaches in the literature [26–28] dedicated to near fields (e.g., short distances like 10 cm or97

half a meter) formulates this integral as a convolution operation with a single complex kernel.98

Hence, the common approaches [29] can be expressed as99

D(G, H) = D0 (G, H) ∗ ℎ(G, H)

= F −1 (F (D0 (G, H))F (ℎ(G, H)))

= *0 ( 5G , 5H)� ( 5G , 5H),

(3)

where h represents a spatially varying complex convolution kernel. The value of the complex100

kernel, h, is typically expressed as101
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where z represents the distance between a hologram plane and a target image plane. This ideal102

model is implemented in a differentiable fashion (refer to odak.learn.wave.classical L81-114) in103

our fundamental library for optical sciences [30]. The same library hosts differentiable models of104

various light transport approximations (refer to odak.learn.wave.classical L8-53).105

Now that we have established an ideal holographic light transport model as in Equation 3.106

We can use this holographic light transport model as a forward model that propagates light107

from a hologram to a target plane. As mentioned earlier, since this model is implemented in108

code using a modern machine learning library, PyTorch [31], we take advantage of the fact that109

modern machine learning libraries are capable of automatically differentiating provided functions.110

Differentiation helps to calculate the complex gradient of our forward model’s error. In simple111

terms, for each input phase-only hologram, the resulting image reconstruction can be calculated,112

and the impact of changing phase values on image reconstruction can be precisely estimated113

using gradients. This fact helps an optimizer to have meaningful modifications on phase values114

of a phase-only hologram at the each optimization step.115

In order to fully realize the described optimization, a loss function is required. For this purpose,116

we define a loss function, !, using least squared error between a reconstructed image at a target117

plane, u(x,y), and a target image, t(x,y),118

! = (D(G, H) − C (G, H))2. (5)

Note that the loss function described here is the simplest case, and we leave customization of119

this loss function to meet the application’s demands as a future discussion. In addition to a loss120

function, we would require an optimizer to optimize our phase-only holograms for various targets.121

We choose to use a Stochastic Gradient Descent based optimization method [32, 33] with a122

learning rate of 0.1. We ran our optimizer using our ideal forward model for 200 iterations at each123

hologram calculation. Our hologram optimization method (refer to ) is distributed as a part of our124

fundamental library for optical sciences [30]. We also provide examples at odak.test.learn_sgd125

for using the optimization method within our library.126

Using the described ideal holographic light transport and hologram optimization methodology,127

we calculate phase-only holograms of target images from DIV2K dataset [34]. We resize images128

https://github.com/kunguz/odak/blob/12a3cc90fca58c2e2aeb86e18382e18423362bdb/odak/learn/wave/classical.py#L81-L114
https://github.com/kunguz/odak/blob/12a3cc90fca58c2e2aeb86e18382e18423362bdb/odak/learn/wave/classical.py#L8-L53
https://github.com/kunguz/odak/blob/12a3cc90fca58c2e2aeb86e18382e18423362bdb/odak/learn/wave/classical.py#L232-L298 L232-298
https://github.com/kunguz/odak/blob/master/test/test_learn_sgd.py


in DIV2K dataset to 1920G1080 to match the size of our SLM. We also convert those images129

to monochrome by taking an average across three color channels. Note that all these images at130

DIV2K dataset are used only in training (finding the holographic light transport kernel, not in test131

cases). The calculated image reconstructions perfectly matching the target images in simulations,132

however they have to be tested against photographs captured from an actual holographic display.133

Thus, we will explain how we build a proof-of-concept holographic display in the next section134

before explaining our final methodology to improve visual quality and realism.135

3. Proof-of-concept holographic display136

We build a proof-of-concept holographic display to assess image quality of our hologram137

optimization methods that uses ideal holographic light transport. We will introduce our learned138

holographic light transport in the next section, we will also use the same proof-of-concept139

holographic display to assess image quality of our methodology.140

Fig. 1. Schematic diagram of our proof-of-concept holographic display prototype used
in our experimental setup.

The optical layout of our proof-of-concept holographic display is represented in Figure 1.141

Following the light from its source, the optical assembly of our proof-of-concept holographic142

display uses a multi-wavelength laser light source, LASOS MCS4. However, for our experimen-143

tation, we only rely on the working wavelength of 515 nm. A Thorlabs LB1945-A bi-convex144

lens with a 200 mm focal length lens collimates the output beam of our laser light source. The145

collimated beam goes through a wire grid linear polarizer, Thorlabs LPVISE100-A, to maintain a146

polarization aligned with our phase-only Spatial Light Modulator’s fast axis (SLM). The linearly147

polarized collimated beam bounces off an anti-reflection coated Pellicle beamsplitter, Thorlabs148

BP245B1, towards our 0.90 degrees tilted phase-only SLM, Holoeye Pluto 2.0 (tilted half order).149

To avoid undiffracted light, we add a horizontal grating to the displayed holograms on our SLM.150

The horizontally grated hologram, D′
0

can be calculated as151

D′
0
(G, H) =

{

4− 9 (q (G,H)+c) for G = odd

4− 9 q (G,H) for G = even
(6)

where q, the original phase of D0, is modified. This way, we steer the location of the reconstructed152

image in space away from undiffracted light. The tilt angle of our SLM calculated using the153



diffraction equation formulated as154

<_ = Δ0B8=(\), (7)

where m is the half-order (0.5), Δ0 is pixel pitch of a SLM and the \ is the angular location of155

the grated hologram plane. For our system, \ is calculated as 1.80
◦. So the required tilt angle156

for the SLM is \
2
≈ 0.90

◦. In the rest of the setup, the phase-modulated beam goes through157

the Pellicle beamsplitter. In the next stage, the beam passes focusing lenses, a combination158

of Thorlabs LA1908-A and LB1056-A. A pinhole aperture, Thorlabs SM1D12, follows the159

lenses at the focal distance of the focusing lenses to avoid undiffracted light. We capture the160

image reconstructions of our hologram dataset optimized using ideal holographic light transport161

from our setup with a lensless image sensor, Point Grey GS3-U3-23S6M-C USB 3.0. For each162

captured image reconstruction, we applied homography correction for the captures, so that we163

can compare it against a ground-truth image or a simulated reconstruction. The holograms in our164

work are always reconstructed for a target image plane at 7 cm away from our proof-of-concept165

holographic display.166

4. Learned holographic light transport167

We provide sample photographs showing image reconstructions captured from our proof-of-168

concept holographic display in Figure 2. These photographs are a result of holograms optimized169

using the ideal holographic light transport model. We also provide input holograms and their170

simulated results for comparison. The visual mismatch between photographs and simulated171

results provides a good understanding of the image quality issues discussed earlier.172

Fig. 2. Mismatch between simulated and experimental results when using ideal
holographic light transport. For a given (a) phase-only hologram, A simulated result
can provide (b) a perfect image reconstruction, while the same hologram in (c) a real
holographic display fail in achieving such image reconstructions as we show in Dataset
1 (Ref. [35]).

To combat this mismatch illustrated in Figure 2, we take advantage of our dataset of photographs173

from the proof-of-concept prototype and their corresponding optimized holograms that used the174



ideal holographic light transport model (Dataset 1 [35]). With a Stochastic Gradient Descent175

based optimization method [32,33] and a learning rate of 0.002, we set to learn a complex kernel,176

ℎ; (G, H) using the loss function at Equation 5 that will replace the original ℎ(G, H) from the ideal177

case. This newly optimized ℎ; (G, H) can be best described as a transfer function that takes an178

ideal input hologram and provides an image reconstruction similar to the captured photographs179

in our dataset. The code base of our learning process follows the same optimization described180

in Section 2 (refer to realistic_holography:optics L87-L137). The phase and amplitude of the181

learned complex kernel, ℎ; (G, H), and the ideal complex kernel, ℎ(G, H), are provided in Figure 3182

for comparison.183

Fig. 3. A phase and amplitude comparison between complex kernels used in (a) ideal
holographic light transport and (b) learned holographic light transport.

5. Evaluation184

Now that we have a learned transfer function, ℎ; (G, H), shown in Figure 3, we look into how185

this kernel representing the learned holographic light transport can help us to optimize new186

holograms. Assume that the learned kernel is more realistic than the original ideal kernel. In that187

hypothesis, the optimized holograms should lead to image reconstruction results better in terms188

of image quality in the experimental case. Meantime, we should also expect that the mismatch189

between simulations and experiment cases to be mitigated. We challenge these assumptions190

by optimizing holograms using ℎ; (G, H) instead of ℎ(G, H). In our exploration for optimizing191

holograms using the learned holographic light transport, we rely on the same process described192

in Section 2 (refer to realistic_holography:optics L45-85).193

Image quality. We provided a visual comparison between holograms generated using the ideal194

holographic light transport and learned holographic light transport in Figure 4. The visual195

quality of the reconstructed images in our proof-of-concept holographic display using the learned196

holographic light transport shows a significant improvement over the ideal case. We believe197

this is because imperfections in our proof-of-concept holographic display are accounted for in198

our transfer function. We kindly invite the readers to observe the visual difference between the199

https://github.com/complight/realistic_holography/blob/3815a1d349adf6e0059eb6dba1b770e104ed8637/optics.py#L87-L137
https://github.com/complight/realistic_holography/blob/3815a1d349adf6e0059eb6dba1b770e104ed8637/optics.py#L45-L85


Fig. 4. A visual comparison between (a) ideal holographic light transport and (b)
learned holographic light transport in reconstructing images. Both of the photographs
are captured with optimized holograms using corresponding holographic light transport
models and our proof-of-concept prototype. Note that target image at both cases are
not used in our training set (DIV2K [34]).

ideal transfer function and the learned transfer function provided in Figure 3. Please note the200

asymmetry in the learned kernel, which does not exist in the case of an ideal kernel.201

The mismatch between simulations and experiments. Our learned holographic light trans-202

port can approximate a transfer function of our proof-of-concept display accurately (Training L2203

loss: 0.0028 and test loss: 0.0034 – learned reconstruction versus captured ground truth images –204

note that images are normalized between zero and one). We compare image reconstructions from205

our simulations with our experimental results from our proof-of-concept holographic display to206



Fig. 5. Learned simulation (a) versus real photograph (b). Ideal light transport based
hologram optimization estimates unrealistic results in simulation. On the other hand,
for a given target image (c), simulations based on learned holographic light transport
closely resembles the experimental results.

provide evidence that this is the case. This comparison is sampled in Figure 5. Our simulations’207

brightness and contrast levels with learned holographic light transport do not truly match our208

photographs from our experimentation. However, the spatial content in experimental cases209

resembles the simulated reconstructions closely and even giving us an excellent hint about what210

to expect in terms of visual quality from a given holographic display. If further tweaking is211

needed, the brightness mismatch in the ideal and learned cases can be improved by following a212

manual calibration routine. In the supplementary documentation of work by Choi et al. [36],213

curious readers can find highly detailed documentation on minimizing the average difference214

between simulation and a physical prototype by adjusting laser power and exposure time. We215

have not conducted such a calibration for this work, as we wanted to show the improvement over216

an uncalibrated system.217

What did we learn from the learned kernel? The holographic light transport kernel learned218

within this work (see Figure 3) indicates that the phase and amplitude behaviour of our physical219

light source is not homogenous in terms of angular emission. The readers may observe this fact by220

carefully checking the asymmetry of the kernel in Figure 3. The amplitude values are far greater221

than the ideal kernel, thus suggesting that to get to brighter images, the hologram optimization222

has to consider this correlation. This fact can be observed in Figure 4 as the dynamic range,223

and brightness levels are better preserved in the learned method. Note that the learned kernel is224

the point-spread function of the given holographic display. Thus, resolution characteristics of225

the holographic display can also be analyzed in the future by studying the limits of a learned226

point-spread function. Finally, note that a single kernel can only capture a global mean of a227

general trend in a holographic display. We will discuss how to improve our learned method in228

the future in the final paragraph of this section.229

Comparison with the state of the art. The leading state-of-the-art methods [5, 6] that bridge230

the gap between simulations and physical holographic displays consists of convolutional neural231

networks. Specifically, the work by Peng et al. [5] relies on more than eight million parameters232

to tune in a training process of neural networks. Many parameters and layers are needed to233

efficiently realize the correlation between a hologram and a final reconstructed image. Otherwise,234

the connections between the pixels of a hologram and a final reconstructed image may not be235

fully identified (locality issue). This locality issue arises from the fact that such models use small236

kernel sizes. In contrast, our work decreases this number of tunable parameters to half, four237

million parameters (2x1080x1920 – amplitude and phase), while relying on kernel sizes that is238



the same as an input image which avoids locality issue. The work by Maimone et al. [37] uses239

one-dimensional separable functions for reducing the memory footprint in classical CGH [37]240

for ideal complex forms such as quadratic phase functions. Drawing inspiration from that work,241

we speculate that further reduction may be possible by storing a parametric form of a learned242

complex kernel.243

The readers of our work may ask if our approach is the solution that could provide the most244

remarkable accuracy in bridging the gap between simulations and experiments in holography.245

We followed a similar approach to the classical model, where a single convolutional kernel246

formulates the transfer function of light transport. Hence, our approach is accurate as long as247

a single kernel is reliable to describe the light transport. To improve accuracy further and to248

have one-to-one matching simulations in the future, we speculate that approaches with spatially249

varying convolutional kernels can provide more capacity to accommodate for a genuinely realistic250

simulation. On the other hand, we learn the light transport between a hologram and an image251

plane. Approaches that provide three-dimensional image reconstructions in CGH require a252

transfer function representing the relationship between a single hologram and multiple image253

planes. In our approach, we have to learn the kernel for each plane using a set of images. In the254

future, a complete form of our approach can potentially be derived where a data set with diverse255

image reconstruction distances helping to learn a parametric light transport rather than per plane256

learning. Our work does an excellent job in capturing optical aberrations and imperfections of a257

holographic display. Our work can be best described as the simplest form of improving realism258

in CGH algorithms without dealing with complex experimentation or complex algorithmic259

approaches.260

6. Conclusion261

Holographic displays often require tedious effort to optimize holograms for the best possible262

image quality. We propose a new learned method to address this issue with holographic displays in263

a simple way. The core of our approach is in a learning procedure that allows one to approximate264

an accurate holographic light propagation model for a given actual holographic display. With this265

approach, we can optimize holograms that can dramatically improve image quality concerning a266

typical ideal holographic light transport model. Our method, in turn, enables a simple yet effective267

method that does not suffer from the overhead of deriving complex algorithmic approaches while268

paving the way towards physically informed learning approaches in the holography domain.269
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