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Abstract 

Image denoising, one of the essential inverse problems, targets to remove noise/artifacts from input 

images. In general, digital image denoising algorithms, executed on computers, present latency 

due to several iterations implemented in, e.g., graphics processing units (GPUs). While deep 

learning-enabled methods can operate non-iteratively, they also introduce latency and impose a 

significant computational burden, leading to increased power consumption. Here, we introduce an 

analog diffractive image denoiser to all-optically and non-iteratively clean various forms of noise 

and artifacts from input images – implemented at the speed of light propagation within a thin 

diffractive visual processor that axially spans < 250, where  is the wavelength of light. This 

all-optical image denoiser comprises passive transmissive layers optimized using deep learning to 

physically scatter the optical modes that represent various noise features, causing them to miss the 

output image Field-of-View (FoV) while retaining the object features of interest. Our results show 

that these diffractive denoisers can efficiently remove salt and pepper noise and image rendering-

related spatial artifacts from input phase or intensity images while achieving an output power 

efficiency of ~30-40%. We experimentally demonstrated the effectiveness of this analog denoiser 

architecture using a 3D-printed diffractive visual processor operating at the terahertz spectrum. 

Owing to their speed, power-efficiency, and minimal computational overhead, all-optical 

diffractive denoisers can be transformative for various image display and projection systems, 

including, e.g., holographic displays. 
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Introduction 

Image denoising is a fundamental problem encountered in various fields, such as computational 

imaging and displays [1], computer vision [2], and computer graphics [3]. For example, in 

computational imaging, noise removal from images is used to mitigate the effects of various 

sources of noise and artifacts, e.g., image sensors, channel transmission, and environmental 

conditions [4], [5]. Similarly, within the realm of computer graphics, image denoising is crucial 

for reducing the low-sampling related image rendering artifacts frequently encountered in real-

time graphics processing applications [6]–[8].  

Over the past several decades, numerous algorithms have been developed for image noise removal. 

[9]–[11]. Apart from his renowned contributions to the birth of holography, Dennis Gabor 

proposed one of the earliest methods for image denoising, involving the Gaussian smoothing of 

noisy images [12]. A plethora of other algorithms emerged for image denoising, including, e.g., 

Wiener filtering [2], anisotropic filtering [13], total variation (TV) denoising [14], denoising by 

soft-thresholding [15], bilateral filtering [16], non-local means denoising [17], block-matching and 

3D filtering (BM3D) [18], and among many others (8–10). While quite powerful, these classical 

denoising techniques often need many iterations for their inference, making them less suitable for 

real-time applications. Deep Neural Networks (DNNs) have also significantly impacted the field 

of image denoising, especially in the last decade [19], [20]. These artificial DNNs have many 

parameters that are stochastically optimized (trained) using supervised learning with a large 

number of noisy-clean image pairs forming the training image set. After their training, DNNs 

generally operate in a non-iterative feed-forward fashion and have shown remarkable performance 

advantages for image denoising of unknown input images, never seen before [21]–[28]. It was also 

reported that DNN-based image denoisers could be used for real-time applications, including 

interactive Monte Carlo rendering [6], [7], [29]–[31]. Despite the recent improvements in modern 

graphics processing units (GPUs), achieving interactive speeds in Monte Carlo rendering 

necessitates working with low spatial sampling, resulting in artifacts in the rendered images. DNN-

based denoisers have been proposed to mitigate such artifacts for real-time applications, 

demanding the use of relatively costly and resource-intensive GPUs [32], [33]. 

Here, we report an analog diffractive image denoiser (Fig. 1) designed to all-optically process 

noisy phase or intensity images to filter out noise at the speed of light propagation through a thin 

diffractive visual processor – optimized using deep learning. Our diffractive denoiser framework 

consists of successive passive modulation layers that are each transmissive; this diffractive 

architecture forms a coherent image processor that all-optically scatters out the optical modes 

representing various forms of noise and spatial artifacts at the input images, causing them to miss 

the output image Field-of-View (FoV), while passing the optical modes representing the desired 

spatial features of the input objects with minimal loss and aberrations, forming denoised images 

at the output FoV without any digital computation in its blind inference. Following its one-time 

supervised learning-based training performed on a computer, a diffractive image denoiser can 

work at any part of the electromagnetic spectrum by scaling the dimensions of its optimized 

diffractive features in proportion to the wavelength of light (), eliminating the need to redesign 

its layers for different wavelengths of operation. 



 

3 

 

We demonstrate the capabilities of this analog diffractive image denoiser framework on both phase 

and intensity images, mitigating salt and pepper noise and low-sampling related spatial image 

artifacts. Our analyses show that these all-optical denoisers successfully filter out various types of 

image noise or artifacts at the input using a thin diffractive processor that axially spans <250, 

while achieving a decent output power efficiency of ~30-40%. For a proof-of-concept, the 

presented diffractive denoiser framework was also experimentally validated at the terahertz 

spectrum for removing salt-only random noise in intensity input images using 3D-printed 

diffractive layers optimized via deep learning. This physical image denoiser framework presents a 

rapid and power-efficient solution for all-optical filtering of image noise or artifacts, and can 

potentially be used for holographic displays and projectors operating at different parts of the 

electromagnetic spectrum. 

 

Results 

In this manuscript, the terms “diffractive visual processor”, “diffractive image denoiser”, 
“diffractive optical network”, and “all-optical image denoiser” are interchangeably used. Figure 1 

illustrates the schematic of two different diffractive image denoisers trained to all-optically filter 

out salt and pepper noise from noisy phase or intensity input images; the first one of these 

diffractive image denoisers (Fig. 1a) is trained to perform phase-to-intensity transformations, 

whereas the second one (Fig. 1b) is trained to perform intensity-to-intensity transformations 

between the input and output FoVs. A comprehensive analysis of the all-optical image denoising 

performances of these trained diffractive denoiser designs under various levels of salt and pepper 

noise is demonstrated in Fig. 2. In these numerical analyses, each one of the all-optical image 

denoisers has 5 diffractive layers, which were optimized/trained using the tiny quickdraw dataset 

[34]. The input illumination is considered to be a uniform plane wave (monochromatic and 

spatially coherent), and the noisy input images to be filtered are in the form of either phase-encoded 

or intensity-encoded images (see Fig. 2a). For each input encoding type (phase/intensity), different 

diffractive denoisers were trained using noise probabilities (𝑷࢚࢘) sampled uniformly from ܷ(0,  (ߩ

where ߩ ∈ {0.1,0.2,0.4}; 𝑷࢚࢘ determines the ratio of the image pixels affected by noise relative to 

the overall pixel count of the image; see the Methods for details. These training noise probabilities 

(𝑷࢚࢘) were randomly sampled for each batch of the input images during each epoch of the training, 

and the noise-free case (𝑷࢚࢘ = 0) in Figs. 2b-c corresponds to our baseline designs trained with 

input images free from noise or artifacts. All the trained models were blindly tested using the tiny 

quickdraw test dataset for different test noise probabilities (𝑷ࢋ࢚). Peak-Signal-to-Noise Ratio 

(PSNR) and Structural Similarity Index Measure (SSIM) were used as image quality metrics to 

quantify the all-optical denoising performance of the trained models [35]. Further information 

regarding the architecture of the diffractive image denoisers, the noise models, the training loss 

functions, the datasets, and other aspects of our implementation are reported in the Methods 

section. 

Figure 2b illustrates the all-optical image denoising results of diffractive denoisers trained for 

noisy phase-encoded input images (salt and pepper noise). The output intensities shown for two 

test images illustrate the success of the trained diffractive image denoisers (with 𝑷0)ܷ~࢚࢘,  (ߩ
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where ߩ ∈ {0.1,0.2,0.4}) compared to a conventional diffractive imager trained without noise (i.e., 𝑷࢚࢘ = 0). For instance, the denoising performance of the diffractive model trained using 𝑷(0,0.2)ܷ~࢚࢘ demonstrates superior performance for phase-encoded test images created with 𝑷ࢋ࢚ = 0.1,0.2, ܽ݊݀ 0.4, achieving average PSNR improvements of 0.65, 1.47, and 1.90 dB, 

respectively, when compared to the diffractive imager trained without noise, 𝑷࢚࢘ = 0. A similar 

conclusion can be drawn for all-optical filtering of the intensity-encoded noisy images reported in 

Fig 2c. The diffractive image denoiser trained using 𝑷(0,0.2)ܷ~࢚࢘ exhibits an improved denoising 

performance when compared to the baseline diffractive imager (𝑷࢚࢘ = 0), achieving average 

output image PSNR improvements of 0.83, 1.39, and 1.45 dB for different noise levels of 𝑷ࢋ࢚ =0.1,0.2, ܽ݊݀ 0.4, respectively. 

These numerical results reported in Fig. 2 demonstrate the versatility of the all-optical image 

denoiser framework to filter out salt and pepper noise present at the input phase or intensity images. 

These diffractive image denoisers effectively learn to filter out the spatial modes that statistically 

represent the targeted noise features, while successfully transferring the spatial modes representing 

the desired features of the input objects, forming denoised intensity images at the output FoV with 

minimal optical loss and aberrations. In this sense, a diffractive image denoiser can be considered 

a 3D spatial filter composed of successive phase gratings structurally optimized through 

supervised deep learning to physically couple out undesired spatial modes of targeted noise 

features, causing them to miss the output image FoV.   

In addition to salt and pepper noise, we also designed diffractive image denoisers to mitigate image 

artifacts stemming from the Monte Carlo-based low-sampling image renderings, as depicted in 

Fig. 3. In this analysis, we report the results of different diffractive denoisers, which were trained 

using noise rates (࢚࢘ࢽ) sampled uniformly from ܷ(0, ߩ where (ߩ ∈ {1,2,3} for both phase-encoded 

and intensity-encoded input images. ࢚࢘ࢽ indicates the noise rate of the Monte Carlo image 

renderings, as detailed in the Methods section. Diffractive models with ࢚࢘ࢽ = 0 define our 

baseline, trained with noise-free input images. The denoising capabilities of these diffractive 

models were blindly tested for various levels of test noise, ࢋ࢚ࢽ ∈ {0,1,2,3}; see the Methods section 

for details. The results of these analyses are reported in Figs. 3b-c, which demonstrate the 

advantages of all-optical image denoisers for both phase-encoded and intensity-encoded input 

images, further supporting the conclusions of the earlier analyses in Fig. 2. For example, Fig. 3b 

present the results of the diffractive models trained using phase-encoded images with (0,3)ܷ~࢚࢘ࢽ, 

which outperform the diffractive imager trained with ࢚࢘ࢽ = 0 for various test images, improving 

the average PSNR values by 0.39, 3, and 1.84 dB for ࢋ࢚ࢽ = 1, 2, ܽ݊݀ 3, respectively. Similarly, 

Fig. 3c demonstrates the success of the all-optical diffractive denoiser models trained using 

intensity-encoded input images, achieving average PSNR improvements of, e.g., 2.22 and 1.45 dB 

for ࢋ࢚ࢽ =  2 ܽ݊݀ 3, respectively, in comparison to the diffractive imager trained using ࢚࢘ࢽ = 0.  

These results reported in Figs. 2-3 demonstrate the internal generalization capabilities of the 

trained diffractive denoisers as the test images (although never seen before) were acquired from 

the same dataset (tiny quickdraw). To explore the external generalization of the all-optical 

denoisers to different datasets containing images with distinct spatial features, we conducted 

additional tests using Fashion MNIST and EMNIST image datasets [36], [37], as illustrated in Fig. 
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4. The trained diffractive image denoiser, which mitigates the low-sampling artifacts of Monte 

Carlo renderings ((0,2)ܷ~࢚࢘ࢽ) from phase-encoded input images, and the baseline diffractive 

imager trained with ࢚࢘ࢽ = 0 are both tested with noisy input images with different levels of noise 

ࢋ࢚ࢽ) ∈ {0,1,2}). The average PSNR and SSIM values calculated across the corresponding test 

datasets confirm the external generalization capabilities of the all-optical image denoisers. For 

example, as illustrated in Fig. 4a, the diffractive image denoiser trained with (0,2)ܷ~࢚࢘ࢽ achieves 

average PSNR (SSIM) improvements of 1.74 dB (0.157) for ࢋ࢚ࢽ = 1 and 3.37 dB (0.285) for ࢋ࢚ࢽ =2, when compared to the baseline diffractive imager trained without noise (࢚࢘ࢽ = 0). A similar 

analysis is reported in Supplementary Fig. S1, which further confirms the external generalization 

capabilities of diffractive image denoisers trained with salt and pepper noise. 

One of the essential characteristics of all-optical image denoisers, as well as other diffractive visual 

processors, is their output diffraction efficiency. In the previously demonstrated results reported 

so far, the all-optical image denoising performance of these diffractive models was achieved 

without employing a training loss term to penalize low diffraction efficiency at the output FoV. 

To understand the trade-off between the output diffraction efficiency and the image quality, we 

conducted additional analysis reported in Fig. 5. As detailed in the Methods section, we adjusted 

the output diffraction efficiency of an image denoiser by varying the weight (ߚ) of the diffraction 

efficiency loss term. During the training process of each diffractive image denoiser model, noisy 

input images (tiny quickdraw dataset) were used, after being subjected to salt and pepper noise 

with a noise probability (𝑷࢚࢘) sampled uniformly using ܷ(0,0.2). These image denoiser models 

trained with various ߚ values were subsequently tested on images that were affected by salt and 

pepper noise with a noise probability of 𝑷ࢋ࢚ = 0.1. As depicted in Fig. 5a, for the denoising of 

phase-encoded images, an all-optical diffractive denoiser can achieve ~28% diffraction efficiency 

with negligible degradation in its output image quality (~0.08 dB and ~0.004 decrease in the 

average PSNR and SSIM values, respectively). Similarly, for intensity-encoded images, all-optical 

denoisers can be designed to have up to ~34% diffraction efficiency while incurring a negligible 

decrease in output image quality (e.g., ~0.11 dB and ~0.016 in the average PSNR and SSIM values, 

respectively); see Fig. 5b. 

For an experimental proof-of-concept of the presented technique, we built a 3-layer diffractive 

image denoiser that was trained for noisy intensity images with salt-only noise, with the noise 

probability (𝑷࢚࢘) uniformly sampled from the interval ܷ(0,0.2). As depicted in Fig. 6a, the 

resulting diffractive design was then fabricated and precisely aligned for experimental testing 

using a single-pixel THz detector and a continuous-wave THz illumination source (λ = ~0.75 mm). 

Figure 6b shows sample binary intensity images of a handwritten letter under different levels of 

salt-only noise, along with their photographs after the fabrication. Furthermore, the phase profiles 

of the trained layers of the diffractive image denoiser and photographs of these layers after their 

fabrication through 3D printing are illustrated in Fig. 6c. During the training of this diffractive 

model, small random 3D misalignments were introduced to the positions of the diffractive layers 

to ensure a physically resilient design, which is also referred to as the “vaccination” of the 

diffractive model [38], [39]. The schematic of the experimental setup is also depicted in Fig. 6d; 

see the Methods section for further details. The trained diffractive image denoiser model was 

experimentally tested on several binary intensity images with various levels of salt-only noise, 
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determined by different noise probabilities (𝑷ࢋ࢚ ∈ {0,0.05,0.1,0.15}). Figure 7 provides the optical 

layout and the experimental results of the 3-layer diffractive denoiser using these noisy inputs. We 

observe a very good concordance between the numerical and experimental results presented in 

Fig. 7c, validating the accuracy and resilience of the 3D-fabricated all-optical diffractive image 

denoiser. The success of these measurements provides an experimental proof-of-concept of the 

presented framework for all-optical image denoising. 

 

Discussion 

We introduced a deep learning-enabled diffractive image denoiser framework capable of 

addressing various forms of noise inherent to different input types, e.g., phase or intensity images. 

In our analyses, the all-optical denoisers were used to remove both salt and pepper noise and the 

spatial artifacts originating from the Monte Carlo low-sample image renderings that are typically 

addressed using nonlinear filters and deep neural networks running on GPUs. The presented 

diffractive image denoisers successfully filter out these different types of noise at the input using 

analog processing of the input object waves; this process effectively couples out the characteristic 

modes that statistically represent the noise features using the sub-wavelength phase structures of 

the diffractive layers optimized through deep learning. These phase structures are also optimized 

to cause minimal optical loss and aberrations for the traveling waves that represent the 

characteristic modes of the input objects. In this sense, the diffractive image denoiser can be 

considered a smart analog spatial mode filter composed of successive phase gratings with a lateral 

pitch of ~/2. Additionally, these all-optical image denoisers do not consume any power during 

the filtering operation except for the illumination light that diffracts through passive layers. 

Regarding the output diffraction efficiency, our findings reveal that these analog image denoisers 

can achieve e.g., ~30-40% power efficiency without significantly compromising their image 

denoising performance. The presented diffractive image denoising framework was also 

demonstrated experimentally, using a 3D-printed diffractive model, successfully removing salt-

only noise from input images as illustrated in Figs. 6 and 7.  

In our analyses and results, the denoising capabilities of the diffractive denoisers have been 

demonstrated for the salt and pepper noise and the low-sampling artifacts of Monte Carlo image 

renderings. Especially for real-time imaging applications, the removal of noisy Monte Carlo 

renderings is a critical challenge, which has led to the development of various deep learning-based 

digital image denoisers [6], [7], [29]–[31]. Compared to these digital approaches, the all-optical 

analog operation of diffractive image denoisers enables the processing of input images as the light 

diffracts through very thin optical elements that axially span <250 ; this ultra-high speed and 

power efficiency of diffractive image denoisers would especially be important for real-time image 

processing applications. 

On the other hand, there are also limitations of the presented approach. First, fabricating a multi-

layer diffractive visual processor with phase elements densely packed with a lateral feature size of 

~/2- is challenging, especially for visible and IR wavelengths, due to the tight alignment and 

fabrication requirements. To mitigate these challenges and develop 3D fabrication processes 
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optimized for diffractive network models, there have been various efforts to fabricate 3D 

diffractive networks operating in the visible and IR wavelengths [40]–[42]. To bring the presented 

framework to shorter wavelengths in, e.g., the visible band, different methods of 3D nano-

fabrication, such as two-photon polymerization and optical lithography, can be used to 

manufacture and align the resulting diffractive layers of a diffractive image denoiser. In addition 

to these, vaccination strategies [38], [39] have been introduced to mitigate the impact of fabrication 

errors and physical misalignments by intentionally (and randomly) introducing such variations to 

the layers of a diffractive model during the training process to have more robust diffractive systems 

that can better withstand physical imperfections. One disadvantage of such vaccination efforts is 

that the independent degrees of freedom within the diffractive processor are reduced since the 

vaccination process effectively increases the feature size at the diffractive layer; this, however, can 

be mitigated by using wider and deeper architectures involving, e.g., a larger number of diffractive 

layers that are each wider. 

A second limitation of the presented approach is that we only considered monochromatic 

illumination that is spatially coherent. While this assumption can be justified for certain 

applications that utilize, e.g., holographic image projection/display set-ups, it is also possible to 

extend the design of all-optical image denoisers to operate under spatially and temporally 

incoherent light. Diffractive optical networks, in general, form diffraction-limited universal linear 

transformers between an input and output FoV, and can be trained using deep learning to operate 

at various illumination wavelengths [43]–[48], also covering spatially incoherent illumination 

[49]. Therefore, all-optical image denoisers and the underlying design framework can be extended 

to filter/denoise color images (e.g., RGB) or even spatially and temporally incoherent 

hyperspectral image signals.  

In summary, we presented power-efficient and ultra-high speed all-optical image denoisers that 

filter out input image noise in the analog domain without consuming any power except for the 

illumination source. The success of all-optical image denoisers can inspire the creation of all-

optical visual processors crafted to solve various other inverse problems in imaging and sensing. 

 

Methods 

Diffractive image denoiser design 

An all-optical image denoiser contains a series of diffractive surfaces ݈ = 0,1, … , ܮ − 1, each of 

which is located at a different axial position ݖ௟. The field transmittance of each diffractive surface ௟ܶ(ݔ, ,ݔ)that is used to modulate the coherent wavefield ௟ܷ (ݕ  is stochastically optimized using (ݕ

deep learning [50]. The modulated coherent wavefield ܷ′௟(ݔ, (ݕ = ௟ܷ(ݔ, (ݕ ௟ܶ(ݔ,  is propagated (ݕ

to the axial position of next diffractive layer ݖ௟+1 using the angular spectrum method, based on the 

Rayleigh-Sommerfeld diffraction integral that represents a 2D linear convolution of the 

propagation kernel ݔ)ݓ, ,ݕ ,ݔ)and the modulated wavefield ܷ′௟ (ݖ  :(ݕ

௟ܷ+1(ݔ, (ݕ = ܷ′௟(ݔ, (ݕ ∗ ,ݔ)ݓ ,ݕ z௟+1 −  ,(௟ݖ
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,ݔ)ݓ ,ݕ (ݖ = ௭௥2 ( 12గ௥ + 1௝ఒ) exp (݆ 2గ௥ఒ ݎ ,( = 2ݔ√ + 2ݕ +  2ݖ

(1) 

where ௟ܷ+1(ݔ,  ௟+1. The field transmittanceݖ denotes the coherent wavefield at the axial position (ݕ

function of each surface ௟ܶ(ݔ,  :is defined as (ݕ

௟ܶ(ݔ, (ݕ = ݌ݔ݁ (݆ ߣߨ2 (ߣ)߬) − ݊௔)ܪ௟(ݔ,  ((ݕ

(2) 

where ߬(ߣ) = (ߣ)݊ + is the complex refractive index of the optical material, ݊௔ (ߣ)ߢ݆ = 1 refers 

to the refractive index of the medium (air in our case) surrounding the layers, and ܪ௟(ݔ,  (ݕ

represents the thickness profile of the corresponding diffractive surface, which is defined as ܪ௟(ݔ, (ݕ = ௟ܱ(ݔ, ℎ௠)(ݕ − ℎ௕) + ℎ௕ 

(3) 

where ௟ܱ(ݔ, ,ݔ) is an auxiliary variable array used to compute the thickness value for each (ݕ  (ݕ

point between [ℎ௕, ℎ௠]. ௟ܱ(ݔ, ,ݔ)௟ܪ and consequently the thickness profile (ݕ  for each (ݕ

diffractive layer ݈ are jointly optimized using deep learning to obtain field transmittance function ௟ܶ(ݔ,  .for each surface [50]–[52] (ݕ

Vaccination of the diffractive image denoisers 

To mitigate the impact of potential misalignments in the physical implementation of a diffractive 

processor, error sources were integrated into the forward model during the training of the 

diffractive design that was experimentally demonstrated. These error sources are modeled by 3D 

displacement vectors, ܦ௟  = ,௫ܦ)  ,௬ܦ  ௭) corresponding to the difference in the position ofܦ

diffractive layer ݈, from its ideal location, where ܦ௫ ,  ௭ were defined as uniformlyܦ ௬, andܦ

distributed random variables,  ܦ௫~ܷ(−∆௫ , ∆௫), ܦ௬~ܷ(−∆௬, ∆௬), ܦ௭~ܷ(−∆௭, ∆௭) 

(4) 

where ∆௫, ∆௬, and ∆௭ represents the maximum displacements along the ݕ ,-ݔ-, and ݖ- axes, 

respectively. Thus, the position of the diffractive layer ݈ at ݅௧ℎ iteration ܮ(௟,௜) is defined as ܮ(௟,௜) = ௫௟ܮ) , ௬௟ܮ , , ௭௟ܮ , ) + ,௫(௟,௜)ܦ) ,௬(௟,௜)ܦ  .(௭(௟,௜)ܦ

(5) 
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Training and testing datasets 

In our numerical results, we used 72,000 randomly selected images from the quickdraw dataset 

[34]. These images (28 x 28 pixels) were augmented by random rotations (ϴ~ܷ(−15°, 15°)) and 

padded to 32 x 32 pixels. Then, they were split into three sets of images including 60,000 training, 

2,000 validation, and 10,000 test images. The prepared dataset is called tiny quickdraw dataset. 

To analyze the external generalization of the trained models, we also tested the resulting diffractive 

designs with unseen images from datasets different from the tiny quickdraw dataset including 

14,400 EMNIST handwritten letters test images (interpolated to 32 x 32 using bicubic kernel) and 

10,000 Fashion MNIST test images (scaled by 0.8 and interpolated to 32 x 32) [36], [37]. 

For the experimentally demonstrated design, the EMNIST dataset was used, which was split into 

two sets containing 80,000 training and 8,800 validation images. These datasets, along with the 

EMNIST test dataset (14,400 images) were interpolated to 20 x 20 pixels and used for the 

optimization and evaluation of experimentally-tested diffractive image denoiser. Without loss of 

generality, the contrasts of the images were inverted to facilitate the 3D fabrication of noisy objects 

in our experiments.  

Implementation details of all-optical denoisers for the numerical results 

The smallest feature size of a transmissive diffractive layer and the sampling period of the 

propagation model were chosen as 0.5ߣ. Input and output FoVs of the diffractive image denoisers 

were 16ߣ16 ݔ ߣ (32 x 32 in pixels). In addition, the size of each diffractive layer was chosen as 64ߣ64 ݔ ߣ (128 x 128 in pixels). The window size of the propagation model was defined as 256 x 

256 in pixels, and the matrices representing the FoVs and the diffractive layers were padded with 

zeros to avoid aliasing. In the numerical simulations, the material absorption was assumed to be 

zero ((ߣ)ߢ = 0), which is a valid assumption considering the overall thickness of our diffractive 

processor, axially spanning < 250. The axial distance between two consecutive planes was 

chosen as 40ߣ. The phase coefficient function of each layer ߠ௟(ݔ, (ݕ = 2గఒ (ߣ)݊) − ݊௔)ܪ௟(ݔ,  (ݕ

and consequently the field transmittance function ௟ܶ(ݔ,  were stochastically optimized using (ݕ

deep learning. ߠ௟(ݔ,  .were initialized as 0 for each layer (ݕ

Implementation details of the experimental results 

A monochromatic THz illumination source (ߣ = ~0.75 ݉݉) was used in the experiments. 

Input/output FoVs were determined to be 40ߣ40 ݔ ߣ (3 cm × 3 cm) and the size of each diffractive 

layer was selected as 66.67ߣ66.67 ݔ ߣ (5 cm × 5 cm). The diffractive feature width of the layers 

and the sampling period of the propagation model were chosen as ~0.667ߣ. The pixel size at the 

measurement plane was ~1.33ߣ, which is equivalent to the noise feature size at the input FoV. To 

accurately fabricate the transmissive diffractive layers and the noisy/clean input objects, the 

complex refractive index of the 3D-printing material ߬(ߣ) was measured as ~1.6518 + ݆0.0612. 

During the training of the experimentally-tested diffractive image denoiser, the thickness profile 

of each trainable layer ܪ௟(ݔ, ,݉݉ was optimized in the range [0.5 (ݕ ~1.65 ݉݉] that corresponds 

to [−ߨ,  for phase modulation. For experimental testing, a 3-layer all-optical image denoiser was (ߨ

trained, fabricated, and tested. The axial distance between the input plane and the first diffractive 



 

10 

 

layer was set to ~13.34ߣ. The other axial distances between successive layers were chosen as ~66.67ߣ. To have a misalignment-resilient design, the positions of the layers and the object were 

randomly shifted during training following the vaccination strategy outlined in Eq. 5. The 

maximum axial and lateral misalignments ∆௫, ∆௬, and ∆௭ were chosen as ~0.26ߣ0.26~ ,ߣ, and ~0.5ߣ, respectively. The thickness profiles of the trained diffractive surfaces and noisy/clean input 

objects were converted into STL files using MATLAB and they were fabricated by using a 3D 

printer (Objet30 Pro, Stratasys Ltd.). 

The schematic diagram of the experimental setup is shown in Fig. 6d. The incident wave was 

generated using a modular amplifier (Virginia Diode Inc. WR9.0M SGX)/multiplier chain 

(Virginia Diode Inc. WR4.3x2 WR2.2x2) (AMC) with a compatible diagonal horn antenna 

(Virginia Diode Inc. WR2.2). An RF input signal of 10dBm at 11.1111 GHz (fRF1) generated by a 

synthesizer (HP 8340B) was used as the input and multiplied 36 times to produce continuous-wave 

(CW) radiation at 0.4THz. The AMC was modulated with a 1kHz square wave for lock-in 

detection. The axial distance between the exit aperture of the horn antenna and the object plane of 

the 3D-printed diffractive image denoiser was ~75cm and the aperture of the horn antenna is 

measured to be ~4mm × 4mm. The output FoV of the diffractive denoiser was scanned using a 

0.25 × 0.5 mm detector with a step size of 0.75mm. To enhance the Signal-to-Noise Ratio (SNR) 

and better align with the output pixel size of our design, which was ~1.33λ (1 mm), a 3×3 bilinear 
upsampling and 4×4-pixel binning were used. The signals were detected by a Mixer (Virginia 

Diode Inc. WRI 2.2) equipped with a pinhole (0.25 × 0.5 mm) placed on an XY positioning stage 

composed of vertically combined two linear motorized stages (Thorlabs NRT100). A 10 dBm RF 

signal at 11.0833 GHz (fRF2) was sent to the detector as a local oscillator to down-convert the signal 

to 1 GHz for further measurement. The down-converted signal was amplified by a low-noise 

amplifier (Mini-Circuits ZRL-1150-LN+) and filtered using a 1 GHz (+/-10 MHz) bandpass filter 

(KL Electronics 3C40-1000/T10-O/O). The signal was initially measured by a low-noise power 

detector (Mini-Circuits ZX47-60) and read by a lock-in amplifier (Stanford Research SR830) with 

the 1kHz square wave serving as the reference signal. The raw data were subsequently calibrated 

into a linear scale. 

 

Supplementary Information contains: 

• Supplementary Figure S1 

• Image noise models 

• Training loss function and imaging performance comparison metrics 
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Figure 1. Schematic of all-optical diffractive image denoiser networks. (a) 5-layer diffractive 

denoiser operating on noisy input phase images/objects. (b) 5-layer diffractive denoiser operating 

on noisy input intensity images/objects. 
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Figure 2. Simulation results of 5-layer all-optical diffractive image denoisers for filtering out salt 

& pepper noise. (A) Optical layout of the diffractive image denoisers operating on phase or intensity 

input images. (B) All-optical image denoising results of different diffractive image denoisers with 

phase-encoded inputs, which are trained using 𝑷࢚࢘ drawn uniformly from different intervals. The 

PSNR value for each case is shown beneath the corresponding output image. (C) All-optical image 

denoising results of different diffractive denoisers with intensity-encoded inputs, trained using 𝑷࢚࢘ 

drawn uniformly from different intervals. 
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Figure 3. Simulation results of 5-layer all-optical diffractive image denoisers for filtering out Monte 

Carlo low-sampling artifacts. (A) Optical layout of the diffractive image denoisers operating on 

phase or intensity input images. (B) All-optical image denoising results of different diffractive 

denoisers with phase-encoded inputs, which are trained using  ࢚࢘ ࢽ sampled uniformly from 

different intervals. The PSNR value for each case is shown beneath the respective output image. (C) 

All-optical image denoising results of different diffractive denoisers using intensity-encoded inputs, 

which are trained using 𝑷࢚࢘ drawn uniformly from different intervals. 
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Figure 4. External generalization performance of 5-layer all-optical diffractive image denoisers for 

Monte Carlo low-sampling artifact removal. The diffractive image denoiser using phase-encoded 

inputs is trained with the tiny quickdraw dataset. (A) All-optical image denoising results on three 

images randomly selected from the Fashion MNIST test dataset and the average PSNR and SSIM values 

on the same test dataset as a function of ࢋ࢚ࢽ. The PSNR value for each case is shown beneath the 

respective output image. (B) All-optical image denoising results on three images of the EMNIST test 

dataset and the average PSNR and SSIM values on the same dataset as a function of ࢋ࢚ࢽ. 
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Figure 5. Quantitative performance of 5-layer diffractive image denoisers as a function of the output 

diffraction efficiency for phase-encoded and intensity-encoded inputs. The weight of the diffraction 

efficiency loss term (ߚ) is varied to train the diffractive image denoisers with different output 

efficiencies. These all-optical image denoisers for each input type are trained using the tiny quickdraw 

training dataset under salt and pepper noise with 𝑷࢚࢘ sampled uniformly from the interval ܷ(0,0.2). 

Subsequently, the trained models are tested on the tiny quickdraw test dataset, affected by salt and 

pepper noise with 𝑷ࢋ࢚ = 0.1. (A) All-optical image denoising performance of the diffractive denoisers 

with phase-encoded inputs as a function of the average output diffraction efficiency. (B) All-optical 

image denoising performance of the diffractive denoisers with intensity-encoded inputs as a function 

of the average output diffraction efficiency. 
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Figure 6. Experimental setup for a 3-layer diffractive image denoiser. (A) Photograph of the 

experimental setup including the 3D-fabricated all-optical image denoiser trained for noisy intensity 

images. (B) Intensity profiles of an image example impacted by various levels of salt-only noise (𝑷ࢋ࢚) 

and their photographs after their 3D-fabrication. (C) Phase profiles of the trained diffractive image 

denoiser layers and their photographs after 3D-fabrication. (D) Schematic of the experimental setup 

using continuous wave THz illumination ( = ~0.75 mm). 
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Figure 7. Experimental results of the all-optical diffractive image denoiser. (A) Layout of the 

diffractive image denoiser with 3 transmissive layers. (B) Photographs of 3D-fabricated layers of the 

trained diffractive image denoiser. (C) Experimental and numerical image denoising performance of 

the designed diffractive denoiser under different levels of salt-only noise (𝑷ࢋ࢚). 


