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Abstract: We report an image denoising analog processor composed of passive diffractive layers 

engineered through deep learning to filter out various types of noise from input images, instantly 

projecting denoised images at the output field-of-view.  

1. Introduction

Image denoising algorithms have been extensively explored in the past decades [1]. Conventional digital denoising 

methods generally involve many iterations, limiting their practical use in applications that demand real-time operation. 

Recently, deep neural networks (DNNs) have been employed to develop non-iterative, feed-forward digital methods 

with outstanding efficacy in image denoising, even at interactive speeds essential for applications such as real-time 

Monte-Carlo renderings. However, the advantages of these quicker and superior digital image denoisers come at the 

cost of using graphics processing units (GPUs) with a higher cost and resource demand.  

Here, we present an all-optical analog image denoiser comprising spatially engineered diffractive layers to process 

noisy input images at the speed of light and synthesize denoised images at the output field-of-view (FoV), as illustrated 

in Fig. 1 [2]. After its one-time training on a computer [3-5], this coherent image processor, equipped with its 

fabricated passive layers, scatters out the optical modes related to undesired noise/artifacts on the input images while 

preserving the optical modes representing the desired spatial features of the object with minimal distortions. 

Consequently, it instantly synthesizes denoised images at its output FoV without digital computation. We validated 

the all-optical denoising performance of this diffractive visual processor by eliminating salt and pepper noise from 

intensity input images. Additionally, the all-optical denoising framework was experimentally confirmed at the 

terahertz spectrum by removing salt-only noise from intensity input images using a 3D-fabricated diffractive denoiser 

that axially spans <250×λ, where λ is the illumination wavelength [2]. 

Fig. 1. Overview of a 5-layer all-optical diffractive image denoiser network trained to filter noisy intensity images [2].

2. Results

The denoising performance of 5-layer diffractive denoiser networks in handling different levels of salt and pepper 

noise is visualized in Figs. 2a. These coherent visual processors are illuminated by a uniform monochromatic plane 

wave. Phase profiles of the diffractive layers within these processors were obtained through supervised learning using 

the tiny quickdraw dataset [2]. During the training phase, noisy input images were randomly generated by introducing 
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salt and pepper noise at different rates onto ground truth images from the dataset. The noise probability (Ptr), defined 

as the ratio of noise-affected pixels to the overall number of pixels, was uniformly sampled from  𝑈(0, 𝜌) where 𝜌 ∈
{0.1,0.2,0.4}. Ptr = 0 refers to the baseline diffractive imager model that was trained using noise-free input images. 

These trained models were blindly evaluated using test images from the tiny quickdraw test dataset, with different test 

noise probabilities (Pte). Figure 2a illustrates sample output images alongside the corresponding Peak-Signal-to-Noise 

Ratio (PSNR) values for the trained diffractive denoisers across different sampling ranges of Ptr. This comparison 

highlights the superior performance of the image denoising diffractive processors; for example, the diffractive 

processor trained using Ptr ~ 𝑈(0,0.2) achieves average PSNR improvements of 0.65, 1.47, and 1.90 dB for Pte = 0.1, 

0.2, and 0.4, respectively, when compared to the baseline diffractive imager trained without any image noise (Ptr = 0). 

Fig. 2. Numerical and experimental demonstrations of all-optical image denoisers for removing salt and pepper noise. a) All-optical image 

denoising performance of different diffractive denoisers with 5 passive layers trained using different noise probabilities Ptr. b) 3D-printed 

diffractive image denoiser designed to remove salt-only noise from input intensity images under THz illumination ( = ~0.75 mm). c) 

Experimental and numerical results of the designed diffractive image denoiser for noisy intensity images containing different rates of salt-only 

noise.[2] 

We also demonstrated the functionality of the all-optical diffractive denoiser framework through a proof-of-concept 

experiment using a 3-layer visual processor designed for terahertz illumination (λ = ~0.75 mm), as shown in Figs. 2b-

c. This 3-layer diffractive image denoiser configuration was trained to process noisy intensity images containing salt-

only noise, where Ptr was uniformly sampled from 𝑈(0,0.2) during the training phase. Then, the design was 3D-

fabricated and carefully aligned to be experimentally tested, as depicted in Fig. 2b. The numerical and corresponding 

experimental results are depicted in Fig. 2c for Pte = 0, 0.05, 0.1, and 0.15, demonstrating the denoising performance 

of the diffractive image processor, which revealed a decent match between our numerical and experimental results.  

The presented diffractive image denoiser framework composed of passive modulation layers operates at the speed of 

light to instantly mitigate noise and spatial artifacts at the input images without consuming power (apart from the 

illumination light) and is able to function at any part of the electromagnetic spectrum, including the visible spectrum. 

These diffractive all-optical image denoisers can be extended to filter out other types of image noise, such as the low-

sampling related spatial image artifacts observed in Monte Carlo renderings [2]. These designs can also achieve large 

output diffraction efficiencies of e.g., ~30-40%, with minimal compromise in their denoising performance, as 

demonstrated in [2].  
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