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Figure 1. Perceptual Guidance in Prescription Correction. Intentionally defocused images on a prototype Virtual Reality 
headset are captured by a camera and simulate common refractive errors on a human eye. An uncorrected eye would see 

images in a blurry way as demonstrated (column 1). We capture the performance of the conventional algorithmic approach to 
solve prescription correction (1) in column 2. Our proposed computational approach to algorithmic prescription compensation 
improves the perceived images, both in color and contrast, as can be seen in the third column. The source image is from Rich 
Franzen (2). A ground-truth photograph focused at the display plane is provided for reference (column 4). It illustrates what the 

user would see while wearing prescription lenses incorporated into the virtual reality headset. 

Abstract 
The enthusiasm for Virtual Reality (VR) brings forward the 
question of accessibility. Current hardware is not suitable for usage 
with prescription correction glasses despite the prevalence of 
refractive eye problems, and algorithmic solutions are not optimal. 
We tackle this issue by proposing a differentiable visual perception 
model that derives key insights from the human visual system, the 
target display, and the target user’s eye refractive errors. Using our 
algorithmic approach, we optimize the rendered images using 
stochastic gradient-descent solvers to provide contrast enhanced 
images at interactive rates for a visually impaired user. 
 
Author Keywords 
Prescription Correction, Image Processing, Neural Image 
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1. Introduction 
As the consumers’ interest for Virtual Reality (VR) grows 
increasingly, enabling fully immersive remote experiences has 
become a new objective in research (3). However, potential VR 
users may suffer from common refractive vision problems such as 
myopia, hyperopia, or astigmatism. These conditions are especially 
prevalent after 40 years old, and represent 23.9%, 8.4% and 33% 
of the population respectively (4), which highlights the need for 
more accessibility in near-eye display technologies (5). Although 
research in the ergonomics of VR technology aims to reduce 
headsets to eyeglasses form-factor (6,7), it is incompatible with the 

feelings of discomfort that arise when wearing prescription glasses 
under a VR headset, hence reducing the feeling of immersion.  
Hardware-driven approaches to prescription correction (8–10) may 
result in bulkier and less affordable VR headsets. Additionally, it 
would require upgrading components with newer devices. On the 
other hand, algorithmic approaches tackle the prescription issue 
without the need for specialized components and with the benefit 
of more accessible software updates (1). 
Our work presents a novel algorithmic approach to prescription 
correction and eliminates the need for corrective lenses with a 
perceptually guided and prescription aware technique. To this end, 
we first study the low-level workings of color perception in the 
Human Visual System (HVS), i.e., how the different types of cone 
cells respond to various wavelengths of light. We then model the 
target display’s specific light spectrum, i.e., subpixels emitting 
various wavelengths, and the associated response of cone cells on 
the retina. Hence, we build an end-to-end differentiable color 
perception model that simulates how a user with a given Point-
Spread Function (PSF) model using Zernike polynomials (11) 
perceives images on a specific display. Finally, our framework 
enables the optimization of the display rendering to produce an in-
focus image for a user with vision impairments and without glasses. 
Specifically, our work makes the following contributions:  

• Perceptually guided Prescription Correction. Our 
novel differentiable model incorporates display-specific 
color perception and a user’s PSF to enhance the contrast 
and color characteristics distinctly in visual perception. 
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• Learned Prescription Correction. Correcting 
prescription at interactive rate is possible with a 
Convolutional Neural Network (CNN), trained to 
estimate optimal corrected imagery. 

• Evaluation on Actual Displays. We analyze our 
approach on VR headsets and conventional displays and 
demonstrate real-life use cases, beyond simulations. 

2. Related work 
Previous research proposes various approaches to solve the quality 
of prescription glasses-free experiences. Relevant papers are shown 
in in Table 1. However, many solutions compromise one aspect for 
another by trading the image quality or requiring bulkier hardware 
which may cause discomfort.  
Table 1. Comparison of prescription correction techniques. 

SW refers to Software while HW refers to Hardware. 

Name Method Perceptual 
Guidance 

Real-
time 

Image 
Quality 

Display 
Type 

Multi-domain (12) SW Preliminary No Poor Desktop 
Constrained Total 
Variation* (1) SW Preliminary No Poor Desktop 

Tone Mapping 
(13) SW Preliminary No Poor Desktop 

Network (14) SW No No Poor Desktop 
Vision 
Enhancement (15) SW No No Poor AR 

SharpView (16) SW No No Poor AR 
FocusAR (8) HW No Yes Good AR 
Autofocals (17) HW No Yes Good AR 
Phase Modulated 
(18) HW No Yes Good AR 

RectifEye (19) HW No Yes Good VR 
Alvarez Lenses 
(20) HW No Yes Good VR 

Software (21) SW No Yes Poor VR 
Ours SW Yes Yes Fair VR 

*Referred to as the conventional method throughout the paper. 

3. Modeling Display-specific Visual Perception:  
We put forward an enhanced algorithmic solution that combines a 
perceptual model of the human visual system and prescription 
correction for real-time image generation of improved quality. 
Imagery on the target display appear as perceived by the HSV.  
Characterizing the target display. A given display has three 
types of emission spectra for red, green, and blue channel pixels, 
noted λR, λG, λB respectively. With a spectrometer, we measure the 
spectral bands of our target display at multiple pixel levels to 
calibrate the display. The display color primaries are then defined 
from the spectral measurements by fitting a proxy function such as 
a Gaussian mixture model with weighted sum of Gaussians. We 
instead use a multi-layer perceptron (MLP) network to act as a 
general function approximator and the color perception responses 
from the HVS can then be investigated. 
Converting color primaries to perceived colors. The 
human retina is populated by broadly classified rod and cone cells. 
Cone cells are primarily responsible for color perception and 
reduce wavelengths of incoming light into trichromat values by 
integrating them over their response functions (22). While red, 
green, and blue wavelengths are measured separately on a sensor 

of a general camera or for display responses, human color 
perception can instead be represented with cone cell activation 
values IL, IM, IS for Long (L), Medium (M) and Short (S) cones. 
Each subtype of cone cell differs in its sensitivity to wavelengths 
of light. The conversion steps from an input color image on the 
target display to the corresponding cone response are shown below: 

ௌܫெܫ௅ܫ]  ] = [ ோܮ ீܮ ோܯ஻ܮ ீܯ ஻ܵோܯ ܵீ ܵ஻ ] [஻ܫܫோீܫ] , (1) 

where IR, IG, IB represents the red, green and blue intensity values 
for all pixels on the image. Eq. (2) shows a sample conversion for 
LR, which represents the L cone output for a displayed red pixel: 

 ∑ ோߣ௅ߣ  = ோ,ఒೃܮ   (2) 

where λL is the L cone sensitivity function and λR is the red pixel 
emission spectrum function for a given display. By substituting the 
right values, we can compute the L, M and S cone sensitivity 
functions in a similar way for all three red, green, and blue subpixel 
emissions. Once the cone response is obtained, the complete 
perception model can finally be represented with the conversion of 
the color opponency model proposed by Schmidt et al. (23), 

[(௅+ெ+ௌ)ܫெ−(௅+ௌ)ܫ௅−(ெ+ௌ)ܫ]  = ெܫ)] + (ௌܫ − ௅ܫ)௅ܫ + (ௌܫ − ,ௌܫ)ெܫ ெܫ , (௅ܫ ], (3) 

where ܫ(ெ+ௌ)−௅ , ܫ(௅+ௌ)−ெ, ܫ(௅,ெ,ௌ), represents the three channels of 
the image sensed in the color-opponency space. 

4. Computing Point Spread Functions from Color 
Primaries 

We define the point spread function with visual aberrations for the 
HSV over several wavelengths of light. The combined PSF for each 
color primary is shown in Eq. (4).  It can be obtained by sampling 
a set of wavelengths from each color primary, calculating the single 
PSFs for each and combine them in a weighted sum of the PSFs. 

,ݔ)ܨܵܲ  ,ݕ ܿ) = ∑  ఒ೎ ,ݔ)ܨఒ೎೔ܲܵݓ ,ݕ  ௖೔) (4)ߣ

For a given color primary c, PSF(x,y,c) is the point spread function. 
The PSF for a sampled wavelength ߣ௖೔  in the color primary c is 
PSF(x,y,λci), with wλci as the weight for that sampled wavelength. 
The above PSF kernel can be utilized in RGB or color opponency 
spaces, based on designers’ choices. In our method, we introduce 
color opponency based PSF formulation (perceptually guided) to 
improve the perceptual characteristics (contrast, quality) of the 
retinal image. Eq. (4) is extended to formulate LMS based kernel,  

,ݔ)௟௠௦ܨܵܲ  ,ݕ (௖೔ߣ = ܣ ∗ ,ݔ)ܨܵܲ ,ݕ  ௖೔) (5)ߣ

,ݔ)௟௠௦ܨܵܲ  ,ݕ ܿ) = ∑  ఒ೎ ,ݔ)௟௠௦ܨఒ೎೔ܲܵݓ ,ݕ  ௖೔) (6)ߣ

where A is the conversion matrix defined in Eq. (1), PSFlms(x,y,c) is 
the PSF for a particular color primary with LMS components. 
Similarly, we modelled the digital camera color primary decoding 
using measurements from the display and captured images from the 
digital camera. In the Eq. (5) and Eq. (6), PSFlms is represented for 
both the HVS and digital camera RGB decoding. We can now 
compute the retinal image r(x,y,c) in the LMS space, by convolving 
PSFlms with the input image s(x,y,c), 

,ݔ)ݎ  ,ݕ ܿ) = ,ݔ)௟௠௦ܨܵܲ ,ݕ ܿ) ∗ ,ݔ)ݏ  ,ݕ ܿ) (7) 
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5. Optimizing Images for Prescription Correction  
We optimize our retinal image for a user’s eye to be as close as 
possible to the ground truth by solving Eq. (8) and obtaining s’: 

′ݏ  ← argmin௦∉∅  ℒ(ܲܵܨ ∗ ,ݏ  (8) (ݐ

where t is the ground truth image and PSF is the kernel defined in 
Eq. (4). We reformulate the above equation to incorporate color 
opponency space optimization, where PSFlms is the kernel in Eq. 
(6) and tlms is the ground truth image in LMS space in Eq. (9). To 
perform this optimization, we calculate the error between the 
ground truth image and the retinal image, ℒ(ݔ)ݎ, ,ݕ ܿ), ,ݔ)ݐ ,ݕ ܿ)), 
using a loss function (e.g., least-squared error), where x and y are 
image coordinates and c the color channels (RGB or LMS space). 
Note that we have also built a learned equivalent of our approach. 

′ݏ  ← argmin௦∉∅  ℒ(ܲܵܨ௟௠௦ ∗ ,ݏ  ௟௠௦) (9)ݐ

5. Results 
Our evaluation method is separated into two parts. Our source 
images were taking from the DIV2K dataset (25). We first 
evaluated our method for the defocus prescription using an Oculus 
Quest 1 VR headset and defocus lens. We captured images using a 
fixed pose and focus camera.  We show improvements in contrast 
and color compared to the conventional method (Figure 1). In the 
second section, we modelled various refractive eye problems in 
simulated retinal image representation to evaluate our method on 
various prescriptions. The contrast of the retinal output image is 
improved with our color opponency based kernel modelling. From 
the per-pixel difference loss maps, we found that our method is 
better in low frequency features and provides slight improvements 
in high frequencies. Overall, our perceptually guided color-based 
kernel results in images with better contrast than with the 
conventional method (Figure 2).  

6. Conclusion 
We present a new rendering approach that aims to improve visual 
experiences and reduce discomfort in VR by enhancing contrast 
and color. Our technique uniquely merges key insights from the 
HSV and provides sharp images when viewed by users with vision 
impairments without prescription glasses. 
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