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Figure 1: Perceptual Guidance in Prescription Correction. We provide a differentiable perception model for optimizing images that
compensate for user prescription and improve the perceived contrast and color in images. Here, we show images as captured by a
camera on a prototype Virtual Reality headset where the images are intentionally defocused to mimic an eye with common refractive
errors. Without any prescription correction, the perceived images appear blurry due to defocus caused by refractive errors (first
column). The second column captures the performance of the conventional algorithmic approach to prescription correction [31] for
the same refractive error. Our proposed computational appraoch to algorithmic prescription compensation improves the perceived
images, both in color and contrast, as can be seen in the third column. For reference, we provide a ground truth photograph focused
at the display plane as in the fourth column, resembling what a user would see with their prescription lenses incorporated into the
virtual reality headset. Source image is from Rich Franzen [12].

ABSTRACT

A large portion of today’s world population suffer from vision impair-
ments and wear prescription eyeglasses. However, eyeglasses causes
additional bulk and discomfort when used with augmented and
virtual reality headsets, thereby negatively impacting the viewer’s
visual experience. In this work, we remedy the usage of prescription
eyeglasses in Virtual Reality (VR) headsets by shifting the optical
complexity completely into software and propose a prescription-
aware rendering approach for providing sharper and immersive VR
imagery. To this end, we develop a differentiable display and visual
perception model encapsulating display-specific parameters, color
and visual acuity of human visual system and the user-specific re-
fractive errors. Using this differentiable visual perception model,
we optimize the rendered imagery in the display using stochastic
gradient-descent solvers. This way, we provide prescription glasses-
free sharper images for a person with vision impairments. We eval-
uate our approach on various displays, including desktops and VR
headsets, and show significant quality and contrast improvements
for users with vision impairments.
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1 INTRODUCTION

Virtual Reality (VR) headsets are becoming increasingly popular
amongst consumers. This encouraged researchers to conceptualize
and build technologies that would enable fully immersive remote
experiences [34]. However, most of the recent developments over-
look the prevalence of refractive vision problems such as myopia,
hyperopia, or astigmatism among potential VR users especially older
than 40 years old, which is at least 23.9%, 8.4% and 33% of popula-
tion, respectively [33]. Moreover, while the current near-eye display
research is focused on miniaturization of the headset to eyeglasses
form-factor [21, 29], wearing prescription glasses under a VR head-
set causes uncomfortable viewing experiences that break the feeling
of immersion.

Hardware-driven approaches to prescription correction [9, 23, 48]
may lead to VR headsets that are bulkier and expensive while neces-
sitating upgrading components with new devices. On the other hand,
algorithmic approaches to prescription correction enable tackling
the prescription issue without the need for specialized components
and with the benefit of software updates [31].

Our work offers a new perceptually-guided algorithmic approach
to prescription correction, while eliminating the need of corrective
lenses. To this end, we first study the low-level workings of the
Human Visual System (HVS), i.e., how different types of cone cells
respond to various wavelengths of light. We then model the display’s
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specific light spectrum (e.g. subpixels emitting various wavelengths)
and the associated response of cone cells on the retina. Hence, we
build an end-to-end differentiable perception model that helps us to
simulate how a user with a Point-Spread Function (PSF) model with
Zernike polynomials [27] perceives images on a specific display.
Finally, our end-to-end perception framework enables optimizing
the display rendering to produce an in-focus image for a user with
vision impairments. Specifically, our work makes the following
contributions:

• Perceptually guided Prescription Correction. We incorpo-
rate the display specific color perception and PSF of a user into
a new differentiable model to ensure that the optimized im-
age’s contrast and color characteristics are distinctly enhanced
in visual perception.

• Learned Prescription Correction. We train a Convolutional
Neural Network (CNN) to estimate optimal images for pre-
scription correction, enabling prescription correction at inter-
active rates.

• Evaluation on Actual Displays. We analyze our findings
beyond simulations. Thus, we evaluate our approach to VR
headsets and conventional displays and demonstrate real-life
use cases.

2 RELATED WORK

Researchers have previously attempted to compensate for refrac-
tive vision problems for glasses-free experience in displays. We
summarize most relevant papers here in Tbl. 1.

Programmable Prescription Lenses. Utilizing focus-tunable
lenses that may be adjusted to the user’s prescription is a common
technique, especially in displays such as VR headsets where the
users view a display through magnifying lenses [9, 26, 36, 41]. An
alternative to these approaches, phase-only spatial light modulators,
could also be used to form a programmable prescription correction
lens [19]. Beyond requiring customized hardware, these techniques
would also require eye-tracking and depth sensor data of a scene to
operate, leading to more demands in hardware.

Computational Displays. Altering the display hardware and
image acquisition technologies could help with prescription correc-
tion [25]. Huang et al. [16] address extreme contrast loss and ringing
artifacts in algorithmic correction techniques by utilizing a stack of
semi-transparent, light-emitting layers for LCDs. Wu and Kim [49]
embed free-form image combiners inside prescription lenses to cre-
ate customizable Augmented Reality (AR) displays. Pamplona et
al. [37] implements 4D light field displays to move the solution to a
higher-dimensional (light field) space, where the inverse problem is
well-posed. To overcome this limitation in resolutions in Pamplona’s
work [37], Huang et al. [17] propose a 4D prefiltering algorithm
that can provide higher contrasts and resolutions. The described
approach [37] has a significant drawback, namely that the PSF of
an eye with refractive errors is typically a low-pass filter and, as
such, irrevocably cancels higher frequencies from the original im-
age. Moreover, holographic vision correction [10, 20] is superior
to conventional approaches, including light field displays. Curious
readers could consult to survey by Aydınoğlu et al. [7] for more on
these holographic displays.

Algorithmic Prescription Correction. Refractive vision im-
pairments of the eye are commonly modeled by constructing a PSF
that represents how the eye as an optical system transmits a point
on the object to a point on the retina. The spatially varying PSF
is convolved with the image of the object to produce the image
formed on the retina. Performing the inverse operation, i.e., de-
convolving the image with the retinal PSF, could help produce an
image that forms clearly on the retina when observed. Alonso et

Table 1: Comparison of prescription correction techniques. Many
of the solutions for prescription correction either fail to provide good
image quality or require bulky hardware components affecting user
comfort negatively. We take an algorithmic approach utilizing an
accurate perception model of the human visual system, leading to
improved image quality and real-time image generation. SW refers to
Software while HW refers to Hardware in this table.

Name Method Perceptual

Guidance

Realtime Image

Quality

Display

Type

Multi-
domain [4]

SW Preliminary No Poor Desktop

Constrained
Total Variation
* [31]

SW Preliminary No Poor Desktop

Tone
Mapping [53]

SW Preliminary No Poor Desktop

Network [43] SW No No Poor Desktop

Vision
Enhancement
[18]

SW No No Poor AR

SharpView [35] SW No No Poor AR

FocusAR [9] HW No Yes Good AR

Autofocals [36] HW No Yes Good AR

Phase
Modulated [19]

HW No Yes Good AR

RectifEye [26] HW No Yes Good VR

Alvarez
Lenses [41]

HW No Yes Good VR

Software [51] SW No Yes Poor VR

Ours SW Yes Yes Fair VR

*This technique is refered to as the conventional method throughout the

paper.

al. [3] verifies the possibility of such an image correction technique
by constructing a simple artificial eye and comparing the image it
forms when viewing a standard and a corrected image. They also
propose an ad-hoc solution to mitigate contrast loss and “ripples” or
ringing artifacts [4]. Monalto et al. [31] present constrained total
variation to decrease ringing artifacts in the corrected image while
sharpening the image’s edges, thereby producing an image with high
contrast along sharp edges. Ye et al. [53] focus on finding a ringing-
free image with higher contrast in locations important to Human
Visual System (HVS), while tolerating more blurriness elsewhere.
Tanaka et al. [43] uses a CNN-based pipeline for prescription cor-
rection along with Zernike-based visual aberration modeling. Li et
al. [28] feed an aberrated image and a map of a PSF for multiple
subregions, to account for spatially variant aberrations into a deep
neural network and train it for image correction on a variety of
lenses. Similar image correction techniques have been applied to
VR headsets. Itoh et al. [18] corrects the defocus aberration for
optical see-through headsets by overlaying a compensated image in
the user’s view. Xu et al. [51] use gradient-based priors to achieve
realtime visual aberration correction for VR HMDs. Oshima et
al. [35] describe realtime defocus correction for optical see-through
HMDs, which is caused by focal rivalry: the simultaneous viewing
of real and virtual content.

Perceptual considerations in displays and graphics systems are
becoming commonplace in relevant research branches (e.g. consult
our supplementary for perceptual considerations in graphics sys-
tems). The surveyed research work does not provide a complete
model of HVS in their solutions, leading to either poor image quality



or demanding hardware. We believe our work resembles the first
attempt to enhance algorithmic solutions in the literature by bridging
the gap between perceptual modeling and prescription correction.

3 PERCEPTUALLY GUIDED PRESCRIPTION CORRECTION

We introduce a differentiable framework for modeling the display
and human visual perception, encapsulating display-specific pa-
rameters, color and visual acuity of human visual system and the
user-specific refractive errors. Our framework allows for optimizing
prescription compensated rendered imagery on standard displays us-
ing a gradient-based policy with novel display-specific perceptually
guided loss functions (Section 3.1). We rely on Zernike polynomials
(Section 3.2) for describing user-specific retinal point spread func-
tions [10] within the forward model to represent optical aberrations
in the HVS (Section 3.3). On overview of our entire display-visual
perception model and the optimization process is depicted in Fig. 2.

3.1 Modeling Display-specific Visual Perception

We characterize our target display and device a computational model
to transform the displayed imagery on the target display into imagery
as perceived by the HVS.

Characterizing target display. A given display has three types
of emission spectra, λR,λG,λB, for their red, green, and blue chan-
nel pixels, respectively. As these emission spectra vary for each
display system, we calibrate the spectra using a spectrometer by
measuring the spectral bands of the target display at various pixel
levels. More details on the spectra measurement and display cali-
bration process are discussed in the Supplementary Material. We
then fit a proxy function to determine the display color primaries
from the spectral measurements. While a simple Gaussian mixture
model with weighted sum of Gaussians can be used for such a proxy
color primary function, we learn this function using a multi-layer
perceptron network that act as general function approximator. Im-
plementation of this proxy function fitting can be found in (See
odak.learn.tools.multi layer perceptron() in [2]). Once we fit a
proxy function for the color primaries, we utilize it to investigate the
color perception responses of the HVS.

Converting color primaries to perceived colors. Human
retinal cells can be broadly classified into rods and cones. Cone cells,
which are primarily responsible for color perception in the HVS, are
of three different subtypes: Short (S), Medium (M), and Long (L)
cells. Each of them differs in its sensitivity to different wavelengths
of light. Please refer to our Supplementary Material for a detailed
discussion this. The L, M, and S cones reduce wavelengths of
incoming light into trichromat values by integrating them over their
response functions [50]. Note that perception in HVS is contrary to
modeling general camera or display response where red, green and
blue wavelengths are independently measured on the camera sensor
or the human retina. The following steps show how to convert an
input color image displayed on a target display to the corresponding
cone response:





IL

IM

IS



=





LR LG LB

MR MG MB

SR SG SB









IR

IG

IB



 , (1)

where IR, IG, IB represents red, green and blue pixel values of an
input image, and IL, IM , IS represents L, M and S cone activation
values for each pixel of the displayed image. From the generalized
formula above, we provide a sample conversion for LR as in the
following equation,

∑
λR

λLλR = LR, (2)

where λL represents L cone sensitivity function, λR represents red
pixel emission spectrum function for a targeted display, and LR

represents L cone output for the displayed red pixel. Similarly,
L cone sensitivity functions for green and blue pixel emissions
can be computed. Thus, L, M and S cone sensitivity functions
can be computed for the three different subpixel emissions. After
computing the cone sensitivity functions, we apply the conversion
from the color opponency model proposed by Schmidt et al. [40] to
represent a complete perception model,





I(M+S)−L

I(L+S)−M

I
(L+M+S)



=





(IM + IS)− IL

(IL + IS)− IM

(IL, IM , IS)



 , (3)

where I(M+S)−L, I(L+S)−M , I
(L,M,S)

represents the three channels of

the image sensed in the color-opponency space.

3.2 Computing Point Spread Functions from Color Pri-
maries

The point spread function for the HVS with visual aberrations can
be defined over several wavelengths of light (see Supplementary Ma-
terial for equations). Therefore, we can sample a set of wavelengths
from each color primary, calculate PSFs for each and use a weighted
sum of the PSFs to obtain a single, combined PSF for each color
primary,

PSF(x,y,c) = ∑
λc

wλci
PSF(x,y,λci

) (4)

where c represents a particular color primary, PSF(x,y,c) is the PSF
for a particular color primary, PSF(x,y,λci

) the PSF for a sampled
wavelength in the color primary and wλci

is the weight for that sam-

pled wavelength. The above PSF kernel can be utilized in RGB, or
color opponency spaces, depending on designers choices. In our
method, we introduce color opponency based PSF formulation (per-
ceptually guided) to improve the perceptual characteristics (contrast,
quality) of the retinal image. Eq. 4 is extended to formulate LMS
based kernel,

PSFlms(x,y,λci
) = A∗PSF(x,y,λci

) (5)

PSFlms(x,y,c) = ∑
λc

wλci
PSFlms(x,y,λci

) (6)

where A is the conversion matrix defined in Eq. 1, PSFlms(x,y,c)
is the PSF for a particular color primary with LMS components.
Similarly, we modelled the digital camera color primary decoding
by using measurements from the display and captured images from
the digital camera. In this way, we are able to use digital camera
captured images to represent our work in this paper. In the Eq. 5 and
Eq. 6, PSFlms is represented for both the HVS and digital camera
RGB decoding. We can now compute the retinal image r(x,y,c) in
the LMS space, by convolving PSFlms with the input image s(x,y,c),

r(x,y,c) = PSFlms(x,y,c)∗ s(x,y,c). (7)

3.3 Optimizing Images for Prescription Correction

In the final step, we aim to optimize an image which, after passing
through the eye’s optical system (modelled as a convolution in Eq. 7),
is intended to produce a retinal image that is as close as possible to
the ground truth image. This is done by solving the optimization
problem,

s′← argmin
s 6∈ /0

L (PSF ∗ s, t) (8)

where t is the the ground truth image and s′ is the input image
optimized for a user’s eye, PSF is kernel defined in Eq. 4. In our
method, we reformulate Eq. 8 to incorporate color opponency space
optimization,

s′← argmin
s6∈ /0

L (PSFlms ∗ s, tlms) (9)



Figure 2: Prescription correction using a perceptually guided computational model and a differentiable optimization pipeline. (1) A screen with
color primaries (RGB) displays an input image. (2) A viewer’s eye images the displayed image onto the retina with a unique Point Spread Function
(PSF) describing the optical aberrations of that person’s eye. (3) Retinal cells convert the aberrated RGB image to a trichromat sensation, also
known as Long-Medium-Short (LMS) cone perception [42]. (4) Our optimization pipeline relies on the perceptually guided model described in
previous steps (1-3). Thus, the optimization pipeline converts a given RGB image to LMS space at each optimization step while accounting for the
PSFs of a viewer modelled using Zernike polynomials. (5) Our loss function penalizes the simulated image derived from the perceptually guided
model against a target image in LMS space. Finally, our differentiable optimization pipeline identifies proper input RGB images using a Stochastic
Gradient Descent solver [38].

where tlms is the the ground truth image in LMS space and s′ is
the input image optimized for a user’s eye, PSFlms is kernel de-
fined in Eq. 6. To perform the above optimization, we compare
images using a loss function (e.g. least-squared error) to calculate
the erorr between the ground truth image and the retinal image,
L (r(x,y,c), t(x,y,c)), where x and y represent image coordinates
and c the color channels, which could be in RGB or LMS color
opponency spaces. Note that we have also built a learned equivalent
of our approach, which we will detail in the Sec. 4.

4 IMPLEMENTATION

Our approach is comprised of three primary elements: a color per-
ception model, a prescription correction optimization pipeline and a
learned model that demonstrates that our differentiable pipeline can
be learnt. All of these components are implemented on PyTorch [38].

4.1 Color Perception Model

Firstly, we identify the emitted wavelengths from the subpixels of a
target display device. For that purpose, we acquire the spectrometer
data for a target display consisting of discrete wavelengths and their
corresponding intensity values normalized between zero and one.
We use Multilayer Perceptron (MLP) to fit a curve on this discrete
data to achieve a vector representation of our intensity profile of
color primaries with respect to wavelength. Our MLP has 64 hidden
layers and converges over 1000 iterations in training with a learning
rate of 0.0005. Once we have numerically identified the normalized

✞ ☎
1 import torch

2

3 def get_LMS_kernel(spectrum):

4 [λR,λG,λB] = get_display_spectrum()

5 for i, λi in enumerate([λR,λG,λB]):

6 wavelengths=torch.arange(400, 701)

7 psf = generate_psf(λi)

8 weighted_psf = spectrum[λi]
∗ psf

9 LMS_kernel += convert_to_lms(

weighted_psf , λi, spectrum[λi])

10 return LMS_kernel

11

12 kernel = torch.zeros(3, H, W , 3)

13 kernel[0] = [H, W , get_LMS_kernel(redspectrum)]
14 kernel[1] = [H, W , get_LMS_kernel(greenspectrum)]
15 kernel[2] = [H, W , get_LMS_kernel(bluespectrum)]

✝ ✆
Listing 1: Computing L, M, S kernel triple for each of the R, G,
B channels and create forward model kernel in 4D tensor form.
The abstraction is Pythonic.

intensity of each color primaries as a function of wavelength, we
use these 2D (intensity, wavelength) vectors to create our color
perception based kernel in LMS space. For each color primary, we
create the set of PSF based on our zernike polynomial generator by



Figure 3: Here we compare outputs from five different refractive vision problems (myopia, hyperopia, hyperopic astigmatism, myopic astigmatism,
and myopia with hyperopic astigmatism) for five sample input images. We provide simulated LMS space representations of target image,
conventional method output, and our method. FLIP per-pixel difference along with it’s mean value (lower is better), SSIM and PSNR are provided
to compare performance of methods. Our method shows better loss numbers for each image quailty metrics for each experiment in simulated
LMS space. The contrast improvement by using our method against conventional method also can be obvserved perceptually. Source images are
from DIV2K image dataset [1].

sampling wavelengths from 400 to 700 with 1 nm intervals. During
each sampling step, we create weighted kernels by multiplying
the created PSF with the intensity value based on corresponding
wavelength from our created 2D vectors for each colopr primary.
After creating the weighted kernel in each sampling step, we obtain
LMS cone responses of weighted kernel using the same intensity
and wavelength data. To compute LMS cone responses, we use the
method explained in section 3.1. In the last step, the set of weighted
kernels are summed up to create our color perception based kernel
for each color primary forming a 4D tensor as [Color Primary, H, W,
LMS Response]. Our method differs from the conventional method
both in terms of kernel type, and convolution operation.

In conventional method, kernel is a 3D tensor with RGB channels
while in our method we use 4D tensor. In this 4D tensor formed
kernel, each color primary has LMS triple seperately as [3, H, W, 3].
The LMS based kernel convolves the image’s each color channel
with corresponding each display spectrum LMS responses. This

operation computationally more expensive compared to conven-
tional method, since more matrix operation is needed. We provide a
pseudo-code for constructing our LMS based kernel as in Listings 1.

4.2 Optimization Pipeline

We implement a prescription correction optimization pipeline us-
ing a modern machine learning library with automatic differentia-
tion [38]. Source code of our implementation is publicly available
at GitHub : complight/learned prescription [13] and GitHub :
complight/learned prescription model [8].

Optimization loop: The differentiable input RGB image initial-
ized from the our target RGB image, and it is passed through the
forward model during optimization loop. In forward model, each
color channel of initialized input RGB image convolved with the
LMS kernel created in computatinal color pipeline. For example,
red channel of input RGB image is convolved with L, M, S channel
of red spectrum kernel in LMS space. Other color channels of input

https://github.com/complight/learned_prescription
https://github.com/complight/learned_prescription_model
https://github.com/complight/learned_prescription_model


RGB image are convolved with the same method. The resulting sim-
ulated image represents the image formed on the retina from L, M,
S cone activations. The target image is converted to LMS space to
calculate L2 loss against the simulated image in LMS space, which
is back-propagated through the optimization model to the input RGB
image. Our results are obtained using Stochastic Gradient Descent
with ADAM [24] as the optimizer. Our pipeline is available to be
used in NVIDIA GPU accelerated computer.

4.3 Learned Model

We implement a semi-supervised deep learning model capable of
reconstructing optimized images from their original RGB versions.
We use a U-Net architecure [39] for this purpose. Such solution
is more suitable than an iterative process for achieving real-time
applications. But it trades the image quality for a faster rendering
speed. Our model comprises of 2 outer layers linked to 8 convolu-
tional hidden layers symmetrically connected by skip connections.
Each layer on the contractive path of the model are formed by a
double convolution and a max pooling operation. On the expanding
path, an up-sampling operation with bilinear interpolation initiates
each convolution. During training, batch normalization and ReLU
activation are used.

Our model was evaluated on a machine with an NVIDIA GeForce
RTX 2070 GPU. The training dataset comprises of 20 images of
dimension 512 x 512 pixels, the RGB images were obtained from
Zhang et al.’s color image processing dataset [54] and the target
optimized images were generated using our iterative method. A
learning rate of 1× 10−4 was used for the training phase and a
conventional mean-squared-error loss function guides the stochastic
gradient descent optimization. With convolutional kernels of size
3x3, each input image sees its channels expand from 3 to 92 and
all the way up to 1472 at the latent space. The results in Figure 5
shows the comparison of the corrected image between our original
pipeline and the neural network’s prediction after over 800 epochs
of training. The average time to generate a single corrected image is
0.0029 seconds with the model as opposed to 8.127 seconds using
the original method, a tremendous decrease.

5 EVALUATION

We divided our experiments in to two sections. In the first part,
we use real hardware to test our methods for defocus prescription.
We used Oculus Quest 1 virtual reality headset, and we placed a
defocus lens to create artificial prescription for a camera shot. In our
experiments we use fixed pose, focus camera to capture images to
demonstrate the method’s performance.

Figure 4 shows our experimental setup for defocus experiments.
Figure 1 shows results from the first part of our experiments. We
modeled the myopia defocus, since in this way we can use defocus
lenses to replicate eye prescription. Experiments shows that we
improved contrast and color compared to conventional method. In
fact, our method is not able to produce same quailty with the target
image.

In the second part, we evaluated our method with different pre-
scriptions to model different refractive eye problems in simulated
retinal image representation. Thus, all the images used in this part
are evaluated in simulated LMS space. Selected images are aimed to
have both high frequency and low frequency features. Four common
different prescriptions are chosen which are myopia, hyperopia, my-
opic astigmatism, hyperopic astigmatism to test our method against
the conventional model. Also, we tested our method for myopia
with hyperopic astigmatism as a complicated refractive eye problem
which is not trivial for eyeglass correction. In each refractive eye
problem modelling, +/-1.5D refractive error is used to model pre-
scriptions. Resutls are visualized in Figure 3. We use different image
quality measures to compare our method agains the conventional
method. Our primary chosen image quailty metric is FLIP which

Figure 4: Testbed used in our evaluations. (A) We use a virtual
reality headset and a camera to capture images from our virtual reality
headset. To emulate a prescription problem in the visual system, we
use a defocus lens. (B) We take pictures with fixed pose and camera
focus from behind the defocus lens to evaluate reconstructed images.

compares the images by using principles of human perception [5].
FLIP allows per-pixel difference loss maps in magma color which is
used in our evaluation images to visualize difference in each pixel
against the ground truth image. In each pixel comparison FLIP
counts both color and edge differences based on models of HVS.
Therefore, we believe that this metric fits with our work. Although
many research on this area has been used SSIM or PSNR loss, how-
ever FLIP is adventegous as it is adhering human visual system
while others are not [32]. In addition to FLIP, we use SSIM and
PSNR to compare our method agains to conventional method to be
stayed relevant with the research community. Figure 3 demonstrates
the comparison of our method against the naive method with our
perceptually guided color modelling.

Results shows that color opponency based kernel modelling im-
proves the contrast of retinal output image. Selected 3 areas are
mangified to show visibility of improvements in a detailed way.
Fom the per-pixel difference loss maps, we found that our method is
better in low frequency features while our method provides slight
improvement in high frequency parts of images. In overall, it is
shown that perceptually guided color based kernel has better con-
trast compared to conventional method.

6 DISCUSSION

Our method could be potentially integrated with Mandl et al. [30] to
support a broader user base with refractive vision impairments. To
the best of our knowledge, we provide encouraging results improving
the conventional method in the literature.

Spatially Varying PSF. Our method does not account for spa-
tially varying natures of PSF in the HVS, which often arrives with
computational cost and complexity [15]. We designed our implemen-
tation in constant resolution displays instead of varying resolution
ones like foveated displays. As an alternative, the deep learning
methods can help support spatially varying PSF convolutions in the
modeling [52] with lesser computational cost but with demand in
data for training. Thus, our method can benefit from these techniques
in the future for precision modeling.

Chromatic Aberrations In A Human Eye. We use PSF cre-
ated by the same Zernike coefficients for each wavelength in our
forward model. However, optics of HVS contain chromatic aber-
rations that are wavelength-dependent. As a future work, we can
further improve the accuracy of our modeling for a human observer
by taking into account the chromatic aberrations in the HVS. In
the meantime, curious readers can find greater details regarding
chromatic aberrations in work by Cholewiak et al. [11].



Figure 5: Results from our learned model. We compare our optimiza-
tion pipeline against our learned model. The top row shows precor-
rected images reconstructed by our optimizer and learned model. The
bottom row shows photographs for each case when captured with a
defocused camera.

Image Quality. Approaches for prescription correction with
additive displays are fundamentally limited. This limit stems from
the fact that PSF, the non-negative transfer function of an additive
display, could support a limited range of frequencies and cause
contrast loss. Our work could be made to be complementary to
holographic displays [7,10,46], which promise a unique solution for
this issue originating from non-negativity in additive displays.

Figure 6: We reconstructed image in our method with addition of
foveation. Foveated rendered area is in the center of reconstructed
image. FLIP per-pixel difference map highlights the foveation.

Foveated Rendering. Foveated rendering in graphics [45]
and displays [22] has garnered interest in the VR and AR research
community. We believe that our method can also benefit from this
trend by accounting for trends in chromatic and achromatic contrast
sensitivity [14, 44, 47] in the HVS. Moreover, we could add a rod’s
response to cone responses by reformulating the LMS response to
improve color difference predictions [6]. We will explore this path
in our future work (See Figure 6 for our early results.)

7 CONCLUSION

Identifying means to help display users with their vision impairments
is an essential aspect of graphics systems. As we focus on this critical

issue, we present a new rendering approach that provides sharp
images when viewed by users with vision impairments without their
prescription glasses. Specifically, our rendering approach uniquely
merged key insights from HVS. It showed that it could help improve
visual experiences and comfort in VR headsets by enhancing color
and contrast in the displayed images. The future will likely bring
more principled approaches in AR/VR displays (e.g. holographic
displays), which could enable future research investigations based
on findings from this work.
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by Meta Reality Labs inclusive rendering initiative for building the
rendering pipeline.

REFERENCES

[1] E. Agustsson and R. Timofte. Ntire 2017 challenge on single image

super-resolution: Dataset and study. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) Workshops, July

2017.
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University College London

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques—Treemaps; Human-centered computing—
Visualization—Visualization design and evaluation methods

1 CONTRIBUTIONS

Here we list contributions from each author in this specific research
work:

Ahmet Güzel:
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2 COLOR OPPONENCY

Human retinal cells could be broadly classified into rods and cones.
Cone cells are primarily responsible for color perception in Human
Visual System (HVS), and the cone density on our retinas peek at our
fovea and drops sharply towards larger eccentricities [4]. Cone cells
have three subtypes known as Short (S), Medium (M), and Long
(L) cells, where each differs in sensitivity to wavelengths of light
[6, 7]. These L, M, and S cones reduce wavelengths of incoming
light into trichromat values by integrating them over their response
functions [8]. According to earlier color opponency studies, HVS
relies on comparison of L, M and S cone activation outputs [3]. A
widely used modeling method in color opponency is S versus (M+L)
for blue-yellow (BY) channel, and L versus M for red-green (RG)
channel [2]. Schmidt et al. [5] proposes L versus (M+S) opponency
for BY channel and M versus (L+S) opponency for RG channel.

3 LEARNED MODEL

Figure 1 shows further results for comparison of the corrected image
between our open-box model and the neural network’s prediction
after over 800 epochs of training.

4 FUTHER EVALUATION

Figure 2 shows further results for different myopia starting from
-2.0 dioptres to -4.5 dioptres. We show that our method’s recon-
structed images have better constrast than conventional method’s
reconstruced images for each case. Images are simulated in LMS
space.

Figure 3 shows further results for different images from DIV2K
image dataset [1]. In each refractive eye problem modelling, +/-1.5D
refractive error is used to model prescriptions.
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Figure 1: Additional images for learned method. Images are selected from DIV2K image dataset [1].



Figure 2: Comparison of convetional method and our approach with different myopia cases. Images are simulated in LMS space.



Figure 3: Additional images for the evaluation section. Images are simulated in LMS space.
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