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Figure 1: SensiCut augments standard laser cutters with a speckle sensing add-on that can (a) identifymaterials often found in

workshops, including visually similar ones. (b) SensiCut’s user interface integratesmaterial identification into the laser cutting

workflow and also offers suggestions on how to adjust a design’s geometry based on the identified material (e.g., adjusting the

size of an earring cut from felt since the kerf for felt is larger than for other materials). (c) Each identified sheet is cut with

the correct power and speed settings.

ABSTRACT

Laser cutter users face difficulties distinguishing between visu-

ally similar materials. This can lead to problems, such as using

the wrong power/speed settings or accidentally cutting hazardous

materials. To support users, we present SensiCut, an integrated

material sensing platform for laser cutters. SensiCut enables ma-

terial awareness beyond what users are able to see and reliably

differentiates among similar-looking types. It achieves this by de-

tecting materials’ surface structures using speckle sensing and deep

learning.

SensiCut consists of a compact hardware add-on for laser cut-

ters and a user interface that integrates material sensing into the

laser cutting workflow. In addition to improving the traditional
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workflow and its safety1, SensiCut enables new applications, such

as automatically partitioning designs when engraving on multi-

material objects or adjusting their geometry based on the kerf of

the identified material.

We evaluate SensiCut’s accuracy for different types of materials

under different sheet orientations and illumination conditions.
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1 INTRODUCTION

While there have beenmany support tools for laser cutting that help

users with tasks such as automatically packing parts onto sheets [42,

46], systems that support users with the different material types

available for laser cutting are largely unexplored [6].

For users, working with the various materials available in a work-

shop comes with several challenges: First, identifying unlabeled

sheets from scrap buckets or material stockpiles in a shared work-

shop is challenging since many materials are visually similar [25].

As a result, users may take the wrong material from the stack and

use it with another material’s power and speed setting. This can

lead to wasted material when the power setting is too low, causing

the outline to not be cut through – or worse the material may catch

fire when the power is too high leading to safety risks. Further,

there are many materials that are not safe to laser cut because they

release toxic fumes [43]. These hazardous materials may easily be

mistaken for safe materials due to similarity in appearance (e.g.,

PVC vs. acrylic) [37].

Because of the challenges outlined above, laser cutter users de-

sire smarter machines that can "identify the materials they [are]

working with, so that the system could [...] suggest settings based

on material" as shown in a recent HCI study by Yildirim et al. [55].

One naive solution for this is to add a camera to laser cutters to

automatically identify the sheets. However, a conventional camera

can be easily fooled by visually similar materials or materials with

printed decorative textures that imitate another material.

To ensure reliable identification, recent laser cutters use sticker

tags attached to the sheets (e.g., QR codes on Glowforge Proofgrade

sheets [23]). As can be seen in Figure 2b, these tags can be detected

by a camera even when materials look similar or are transparent.

However, scanning the tags to detect the material type has its own

issues. First, a new tag has to be attached onto each new material

sheet. Second, laser cutter users need to be careful to not cut off the

tag to ensure that the remaining part of the sheet can later still be

identified. These issues exist because using tags for identification is

not inherently material-aware as the laser cutter does not measure

the physical properties of the material.

Figure 2: Existing material identification approaches:

(a) Manually selecting from a database (e.g., ULS [50]) or

(b) scanning QR code stickers on sheets (Glowforge). (c) Sen-

siCut uses speckle sensing to identify the material based on

its surface structure without the need for additional tags.

In this paper, we investigate how we can identify laser cutting

materials by leveraging one of their inherent properties, i.e., surface

structure. A material’s surface structure is unique even when it is

visually similar to another type. To achieve this, we use speckle

sensing. This imaging technique works by pointing a laser onto the

material’s surface and imaging the resulting speckle patterns. We

built a hardware add-on consisting of a laser pointer and a lensless

image sensor, which can be attached to the laser cutter head using

a mount. We then use the captured speckle patterns to identify the

material type with our trained neural network. Our user interface

uses the material type information to support users in different

ways, i.e. it automatically sets the power and speed settings for the

detected material, it warns the user against hazardous materials, it

automatically adjusts the shape of a design based on the kerf for

the detected material, and finally, it automatically splits designs

when engraving onto multi-material objects. We also discuss how

speckle sensing can be used to estimate the thickness of sheets as

another material-aware component for future laser cutters.

In summary, by leveraging speckle sensing as an identification

technique, we can improve the material awareness of existing laser

cutters. Our work enables safer and smarter material usage, ad-

dresses common material identification-related challenges users

face when laser cutting, and encourages makers to reuse laser-cut

scraps to reduce waste [9, 51]. Our contributions are the following:

• An end-to-end laser cutting pipeline that helps users identify

materials by sensing the material’s surface structure using

laser speckles to, e.g., automatically set the corresponding

power/speed, warn against hazardous materials, adjust de-

signs based on material-specific kerf, or split designs when

engraving onto multi-material objects.

• A compact (114g) and low-cost material sensing add-on for

laser cutters that simplifies hardware complexity over prior

work by using deep learning.

• A speckle pattern dataset of 30material types (38,232 images),

which we used to train a convolutional neural network for

robust laser cutter material classification (98.01% accuracy).

• A technical evaluation showing which visually similar ma-

terials speckle sensing can distinguish under various sheet

orientation and illumination conditions.

2 MOTIVATION

SensiCut addresses an important open challenge in the personal

fabrication literature. A recent field study [55] in HCI revealed an

unaddressed user need for fabrication tools concerning the “aware-

ness of material types”. In particular, users wished that the tools

could “identify the materials they were working with [and] sug-

gest settings.” The authors conclude that “HCI researchers could

advance [these tools] by leveraging new sensing [...] capabilities”.

To further understand what specific challenges exist, we sur-

veyed five additional HCI publications [2, 7, 22, 26, 36]. We also con-

ducted formative interviews with six expert users that we recruited

by reaching out to makerspaces. Each expert user had several years

of laser cutting experience working with different material types.

During the 1-hour semi-structured interviews, we interviewed them

about their experiences using different material types, difficulties

they had identifying materials, and how different material types

affected their designs for laser cutting. Additionally, we performed

a study in which we gave 13 novice users, who had used laser cut-

ters at least once but no more than four times, a list of 30 materials

commonly found in workshops (list of materials in Section 6.1), and

https://doi.org/10.1145/3472749.3474733
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asked them to match them to 30 unlabeled sheets. For the interview

responses, we took a bottom-up approach in our thematic analysis

to identify four main challenges, which we report below.

Characterizing unlabeled sheets: We found that users have a hard

time identifying materials. In our study, novices were able to label

on average only 29.23% (SD=6.41) of the sheets correctly. The ones

that were correctly identified by most users were cardboard and

cork. The top 10 mislabeled sheets were all different types of either

plastic or wood. However, this is not only an issue for novices, but

also for experts. One senior maker we interviewed reported that

certain materials are too similar to distinguish by only looking and

touching. He added that he checks if a sheet is acrylic or Delrin

by "breaking the sheet and seeing how brittle it is." Identifying

materials by their surface structure eliminates these issues since

even similar types of plastic have different surfaces structures.

Democratizing material knowledge:Oneway to help novices identify

materials is to ensure sheets are labeled at all times. However,

in practice, this is infeasible to do for all sheets. One expert we

interviewed, a manager of a large workshop, said that "there is no

way to keep track of all the sheets [as] so many people contribute

to the scrap piles." Another option if sheets are unlabeled is that

novice makers ask an experienced maker which type of material it

is. However, Annett et al. [2] report that makers with “knowledge

[of] material [were] often difficult to access” and that users need

“intelligent sensing [of] materials.” Hudson et al. [22] show that

“early in the casual makers’ learning process motivation appeared to

be very fragile” and “early failures [can] result in them completely

giving up.” A smart system that provides access to reliable material

identification would eliminate this issue, thereby lowering the entry

barrier to laser cutting and democratizing its use.

Automating mundane work: Laser cutting requires several steps

that are mundane and would benefit from being automated. For

instance, in today’s workflow, users have to identify the sheet,

select the correct material type from the material database, and

then verify the power/speed settings. Yildirim et al. [55] found that

professional users want "automated [fabrication tools] that could

pick up menial work, [e.g.] registering materials." They "find it

frustrating when they have to monitor an autonomous [tool]." A

material-aware sensing platform can remove the tedious overhead

and allow users to focus on the essential work.

Enhancing safety of all users: Laser cutting poses both safety and

health hazards [20, 30]. In our interviews, all experts reported

that they experienced multiple fires in the laser cutter at their

workspaces. One of them said that "all of the places [he has] worked

at had a fire" and that it is a "huge safety risk." Concerning health,

one of our interviewees, a class instructor, said someone almost cut

a hazardous material that includes chlorine, which would release

toxic fumes and corrode the machine. In addition, not adhering to

the rules would have "revoked all class participants’ access to the

workshop." For safety-critical tasks, HCI researchers have looked

into designing interfaces where the role of users is “mediated by

computer technology” [7, 36]. For fabrication tools specifically,

Knibbe et al. [26] found the “implementation [of] safety alerts could

provide significant benefits within group makerspaces.” A smart

sensing platform can provide such safety alerts and prevent human

error by determining if hazardous materials are used or when users

accidentally select wrong laser settings, which can cause a fire.

3 RELATED WORK

In this section, we summarize previous work on detecting material

sheets in laser cutters, discuss sensor-based material classification

techniques, and survey prior work in laser speckle sensing.

3.1 Detecting Properties of Material Sheets
inside Laser Cutters

Several research projects have augmented laser cutters with cam-

eras to detect different properties of the material sheet, such as

its location inside the laser cutter, its geometry (i.e., outline and

position of holes), and the material type.

As conventional laser cutting interfaces do not show where

the inserted material sheets are located, users typically align their

drawingwith the sheets manually before cutting. To aid this process,

researchers suggested placing a camera on top of the cutting bed

to display the sheets’ position to the user (VisiCut [34]). Even with

a camera preview, packing parts onto sheets can be a cumbersome

task, especially when the sheet has many holes. To support users,

PacCAM [42] extracts the sheets’ boundary and holes from a photo.

Once the outlines are detected, it provides interaction techniques to

speed up the packing on the sheet. Fabricaide [46] packs the parts

during the design process to make the user aware of constraints

such as sheet availability.

After packing the parts onto the sheet, users still have to set the

power and speed settings for the laser depending on the material

type. To automatically detect the material type, Laser Cooking [14]

uses an overhead camera to distinguish between different food

items using the brightness difference of the pixels in the captured

photos. However, this does not work reliably when the materials

are visually similar. To bypass this issue, a recent commercial laser

cutter (Glowforge Plus [23]) uses tag stickers, i.e., QR codes, attached

to the material sheets. Such tags have also recently been studied

in other areas of digital fabrication research, e.g., as an integrated

feature of 3D printed objects [10, 15, 29]. However, as mentioned in

the introduction, additional tags come with several issues. SensiCut

is able to distinguish between visually similar materials and differs

from prior work by not relying on external tags and instead sensing

the material type based on its inherent surface structure.

3.2 Material Type Sensing for Applications
Outside Personal Fabrication

Outside of the realm of personal fabrication, researchers have

explored different ways to sense a material’s type. Rather than

distinguishing between materials by comparing their colors, re-

searchers measured a material’s reflectance properties [45]. This

can be achieved by capturing images with conventional cameras,

which include information on the bidirectional reflectance distribu-

tion function (BRDF) of materials [38]. However, such techniques

require multiple images from different perspectives, which can

either be achieved through multiple cameras or a single camera

placed at different locations [11]. Alternatively, one can use a sin-

gle camera and multiple light sources. For instance, SpeCam [54]
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Figure 3: Speckle sensing. (a) Laser rays reflect off the material surface and arrive at the image sensor. Phase differences

between the rays result in mutual interference and thus dark or bright pixels in the captured image. (b) Different materials

viewed by a regular camera, a scanning electron microscope, and our speckle sensing imaging setup. (c) Our speckle sensing

add-on consists of a laser pointer, lensless image sensor, microprocessor, and battery.

uses a smartphone display as a multispectral light source and cap-

tures the reflection of the display’s light on a material’s surface

with the front camera. Lightweight Material Detection [18] uses

multiple LEDs, photoresistors, and a light sensor IC to determine

a material’s type. Alternatively, one can identify a material by its

subsurface scattering properties as measured by time-of-flight (ToF)

cameras [49]. Another technique is to measure the material’s ther-

mal conductivity: When humans touch a surface, a thermal camera

can sense how long the material maintains the temperature in-

crease caused by the touch [1], which can be used to determine

the material type. In the context of laser cutters, SensiCut’s sensing

technique is particularly suitable because it reduces the numbers of

hardware components compared to previous work by using only a

single laser and imaging sensor mounted to the laser cutter’s head.

3.3 Laser Speckle Sensing Applications

In contrast to the approaches explained previously, speckle sensing

is a sensing technique that uses a laser pointer for material identifi-

cation. Because the laser cutter already comes with a laser pointer

to show its current position on the platform, speckle sensing can

leverage the existing components in the laser cutter.

A laser speckle is a grainy pattern that can be observed when

a surface is illuminated with a coherent light source, such as a

laser pointer [16]. Speckle sensing has attracted interest in HCI

for different applications, such as environment or motion sensing.

VibroSight [56], for instance, analyzes speckle patterns to determine

if appliances are on/off. When on, objects vibrate and their surface

moves slightly, which results in a change in the reflected speckles.

SpeckleSense [57] enables motion sensing for spatially-aware mobile

devices by computing how much the speckles have moved from

one image to the next to infer the motion. SpeckleEye [33] and

CoLux [47] use this approach to also sense hand gestures.

While speckle imaging has been used for environment and mo-

tion sensing, it can also be used for material classification. This is

due to the fact that at the microscale, sheets that appear similar

to the human eye have irregularities that create a reflection pat-

tern unique to the material [8]. For instance, SpecTrans [44] uses

speckle sensing in combination with multispectral LED illumina-

tion to understand where the user is holding their smartphone in

relation to an object made from different transparent materials.

In contrast to this work, SensiCut focuses on material identifica-

tion in the context of laser cutting. In particular, with SensiCut,

we contribute an end-to-end material-aware laser cutting pipeline,

a speckle sensing add-on for laser cutters that reduces hardware

complexity by taking advantage of deep learning, a user interface

that integrates material sensing, and a dataset of speckle patterns

for material types commonly found in makerspaces and workshops.

As outlined in the next section, our method has the potential to be

affordably integrated and democratized in future laser cutters.

4 SPECKLE SENSING HARDWARE ADD-ON
FOR LASER CUTTERS

In this section, we first discuss the working principle behind laser

speckle imaging. We will then show how we built a sensing add-on

that can be mounted onto existing laser cutters and highlight the

technical contributions of our add-on over prior work.

4.1 Speckle Sensing Working Principle

Figure 3a illustrates how laser speckle sensing works. It uses a

coherent light source, i.e., a laser, to create the speckles and an

image sensor for capturing them. To create the speckle pattern, the

laser light reflects off the material surface, resulting in a reflectance

pattern (speckle) of bright and dark spots that looks different de-

pending on the material’s surface structure. This occurs because

the tiny features of the material surface lead to small deviations in

the optical path of the reflected laser beam. To show this, we pro-

vide additional electron microscope images of different materials

in Figure 3b. Although the materials look visually similar to the

human eye, the electron microscope images clearly show different

surface structures, resulting in different speckle images that can be

used for material identification.
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4.2 Hardware Add-on

To integrate speckle sensing into an existing laser cutter, we con-

sider (1) which light source and (2) image sensor to use, as well as

(3) how to mount all required components on the platform. We pro-

vide additional specifications for each component in the appendix.

Laser Pointer: Our initial idea was to utilize the laser pointer present

in our laser cutter (model:Universal Laser Systems (ULS) PLS6.150D),

which conventionally serves as a guide to align the material sheet.

However, we found that laser pointers need to be sufficiently pow-

erful to create speckles detectable by the image sensor. For this

reason, green laser pointers work best given equal power since

most commercial cameras have a Bayer mask with twice as many

green elements as red or blue. Unfortunately, our laser cutter has

a red laser pointer with a power of <1 mW, which according to

our experiments was not sufficient to create detectable speckle pat-

terns. We therefore decided to use an additional green laser pointer

(515nm, <5mW). In the future, this additional laser pointer may not

be necessary if manufacturers increase the power of their existing

laser pointers.

Image Sensor: Our goal was to choose a sensing setup that is com-

pact, i.e., uses as few components as possible, yet provides suffi-

ciently high resolution to detect the speckles. When surveying the

related work, we found that existing setups consist of multiple sen-

sors and/or LEDs [18, 44]. Each component in these setups helps

acquire a unique datapoint related to high-level statistics, such as

the average brightness or overall spectral reflectivity, which are

then input into a classifier as 1D data. We found that we can re-

duce the hardware complexity over prior work to only a single

image sensor if feed the raw image, in which the 2D spatial data

correlates with the materials’ surface structure, directly into a con-

volutional deep neural network (see Section 6.3). Although the 2D

image input requires additional time to compute the prediction

result compared to 1D data, it does cause not a disruption to the

laser cutting workflow (0.21s on a 2GHz Intel Core i5 processor).

For the image sensor, we chose an 8MP module (model: Rasp-

berry Pi [35]. As explained previously, this image sensor, like most

commercial ones, has a higher sensitivity to the green region of

the spectrum [48], which is beneficial for capturing speckle images

created by our green laser pointer. We placed the laser pointer and

image sensor as close as possible so that the speckles’ intensity

caused by the laser illumination is high enough when captured by

the image sensor.

Before mounting the image sensor, we removed the lens of the

camera module using a lens focus adjustment tool. We did this

because the laser pointer only illuminates a tiny area on thematerial

sheet (i.e., size of the laser spot). When imaging the sheet with the

off-the-shelf camera module that has the lens attached, the speckle

is present in only a small portion of the entire image because the

lens directs not just the laser light, but all the available light rays

in the scene onto the image sensor. This gives us less speckle data

to work with. When removing the lens from the camera module,

however, it is mainly just the reflected laser light that hits the sensor,

causing the speckle pattern to appear across the entire image (last

column in Figure 3b). Thus, the camera module with no lens utilizes

all the pixels of the bare image sensor and can capture a higher-

resolution pattern.

Microprocessor and Battery: Since commercial laser cutters are closed

source, we had to add a small and lightweight microprocessor and

an external battery pack to allow our add-on to capture images.

Since the microprocessor has limited computational capacity, we

send the captured images wirelessly to a computer for further pro-

cessing. To make speckle sensing available in future laser cutters,

manufacturers do not need to add these components since laser

cutters already include processing hardware and a power supply.

Mounting on Laser Cutter: To make our hardware add-on compact

and easy to use, we designed and 3D printed the lightweight me-

chanical housing (60g) shown in Figure 3c. The housing snaps onto

the laser cutter’s head and can be mounted with a small rod. At-

taching the sensing hardware to the laser head allows us to avoid

additional calibration since because of the mount, the add-on is

always located at a fixed offset from the laser. All together, the

add-on weighs 114g.

In summary, our speckle-based hardware add-on consists of

a laser pointer, a lensless image sensor, a microprocessor, and a

battery pack. However, to integrate speckle sensing into future laser

cutters, manufacturers only need to add the lensless image sensor –

all other components (power and computing infrastructure, laser

pointer) already exist in laser cutters.

5 USER INTERFACE & APPLICATIONS

In this section, we describe our custom user interface (UI) that

integrates laser speckle sensing into the laser cutting pipeline. In

particular, we show how it helps users identify the material of a

single sheet or multiple sheets at once, and supports users with cut-

ting or engraving multi-material objects. Additionally, SensiCut can

offer safety warnings, provide extra information on materials, and

help with kerf-related geometry adjustments. We also describe how

we use the interface and SensiCut’s material sensing capabilities

for different applications.

Similar to the traditional laser cutting pipeline, users first start

by loading their design (i.e., an SVG file) into the SensiCut UI, which

subsequently shows it on the canvas (Figure 4a). Next, users place

the material sheet they intend to use inside the laser cutter.

Figure 4: SensiCut UI. (a) The Pinpoint tool allows users to

identify thematerial at a desired location on the cutting bed.

(b) The user enters the thickness value corresponding to the

detected sheet and starts cutting.
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Figure 5: Making a face shield. (a) Find flexible sheets from the stockpiles and (b) place in the cutter. (c) Upon identification, the

UI labels all 3 materials and gives relevant information on, e.g., their handling and safety. (d) After the cut parts are assembled,

the shield can be safely sanitized with alcohol.

5.1 Identifying Single Material Sheets

To identify a single material sheet, users point SensiCut’s laser

pointer to a desired location on the sheet as shown in Figure 4a.

They can do this by first choosing the Pinpoint tool (arrow 1) and

clicking the point on the canvas that corresponds to the physical

location in the laser cutter (arrow 2). SensiCut then moves the laser

over this location to capture the speckle pattern and classify the

material. The resulting material name is then shown to the user

(arrow 3).

After the user clicks Continue, the shapes in the canvas are color-

coded to reflect the material type (e.g., red corresponds to Cast

Acrylic). The user then enters the material thickness in the text

field next to the classification result (Figure 4b). Once ready for laser

cutting, they can hit the Start button and SensiCut automatically

retrieves the appropriate laser power, speed, and pulse per inch

(PPI) settings from the material settings database.

Using the identified material type, SensiCut can further support

users via different functionalities:

Toxic and Flammable Material Warnings: As mentioned in the in-

troduction, there are many materials that should not be laser cut

because they are toxic, flammable, and/or harmful to the machine.

Based on the identified material type, SensiCut displays a warning

whenever the user requests to cut a material that is hazardous and

should not be used in the laser cutter.

ShowingMaterial-Relevant Information: Even though somematerials

appear similar, they may exhibit different characteristics, which

novice users may not be aware of. To address this, SensiCut displays

additional information on each detected material to inform users

about general characteristics of the material, ideal uses with sample

pictures, and handling/care instructions. We referred to the laser

cutting service Ponoko [24] to retrieve this information. Workshop

managers can edit and extend this information depending on the

workshop type and its users (architecture vs. engineering).

Kerf Adjustments: Design files can have details that are too intri-

cate for certain material types, especially when the sheets are thin.

Cutting these fine geometries can fuse details together because of

kerf. The kerf, i.e., the amount of the material removed due to the

laser, depends on the type of the material [39, 40]. When details are

affected by kerf, SensiCut shows a warning to the user and then of-

fers three options to address it: SensiCut can either slightly enlarge

the design based on the material type, smooth out too intricate

details, or ask the user to adjust the file manually in the drawing

editor (e.g., Adobe Illustrator).

Application: Fabricating a Face Shield From Different Unlabeled

Scraps: In this application example, we would like to fabricate a

face shield and use transparent plastic materials to ensure clear

sight while wearing it. We start by surveying different designs

online and after deciding on one [12], we download the parts, which

consist of a visor and a shield. The design instructions highlight the

importance of using the correct material for each part. In particular,

it is recommended to use a transparent rigid material for the visor

(e.g., acrylic) and a transparent flexible material for the face shield

(e.g., acetate or PETG).

We start by browsing through the leftover scrap materials from

our workshop. However, while going through the transparent scrap

materials, we notice that almost all of them are unlabeled. To make

the visor, we take the first rigid transparent material we find in the

pile that has a sufficient size and place it inside the laser cutter. We

then open SensiCut’s UI (Figure 4a) and select Pinpoint to identify

the material at a desired location. The right-hand bar shows the

material has been detected as cast acrylic, which is a suitable rigid

material for the visor. Once we confirm, SensiCut automatically

retrieves the appropriate power/speed settings for this job and the

laser cutter starts cutting the acrylic.

We repeat the procedure for the shield, which needs to be made

from a flexible transparent material. We go back to the scrap ma-

terials and find three different flexible sheets (Figure 5a). We read

online that acetate and PETG may be more suitable than other

plastics, but are not sure which one is which. We take all three and

place them in the laser cutter. In the UI, we then choose Identify

sheets and set the number of sheets to 3. Next, we click on one

point on each sheet to instruct SensiCut to identify the material

there. Once the results are displayed, we realize that one of them is

a polycarbonate (Lexan), which SensiCut labels with a "hazardous"

warning (Figure 5c). The other two sheets are identified as acetate

and (thin) cast acrylic.
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Figure 6: Rapid material testing for product design. (a) Choosing multiple samples from amaterial swatch and (b) inserting in

the laser cutter. (c) After sensing, the UI matches each shape with the corresponding material. It also warns that the kerf for

felt will compromise the design.

To learn more about the difference between the two materials,

SensiCut shows information from its knowledge database and dis-

plays it on the corresponding material. For example, it shows that

acetate has high impact strength and is reasonably flexible, and that,

in contrast to acrylic, it can be wiped down with alcohol, which is

important to disinfect the shield. We remove the Lexan and acrylic

sheets from the laser cutter, choose acetate in the UI, and start

cutting. Now that all parts are cut, we can assemble the final face

shield (Figure 5d).

5.2 Identifying Multiple Sheets of Different
Materials at Once

SensiCut also allows users to cut multiple sheets of different mate-

rial types in rapid succession. The user first loads the design files

that contain the shapes they want to cut from the different sheets.

Next, they place the corresponding material sheets inside the laser

cutter and initiate the Scan multiple shapes mode. This causes Sen-

siCut to go to the location of each shape and capture an image

there for material identification. The resulting material names are

then displayed in the Material Detection sidebar and the shapes are

similarly color-coded based on the material types.

Application: Rapid Testing of Multiple Material Types for Product

Design: In our second example, we want to rapidly prototype a new

earring design in a white color. We want to fabricate the earrings

to test the look and feel of different materials to determine which

one looks best when worn. To evaluate different material types, we

pick a handful of white samples from a material swatch (Figure 6a).

To speed up our prototyping process, we want to cut all the

material samples at once. To do this, we place all our selected

material samples on the laser cutter bed as shown in Figure 6b.

We then load the earring design. Next, we position a copy of the

earring design in the UI in the location where each material sample

is placed. Next, we choose the Scan multiple shapes option. After

the scan, each earring’s shape is color-coded to reflect the detected

material type: felt, foam board, cast acrylic, and leather (Figure 6c).

Next, we enter the thickness for each material sheet: 1mm for

felt and leather, and 3mm for the others. For felt, SensiCut shows

a notification that our design has details that are too intricate for

a thickness of 1mm and may thus fuse together because of kerf

(Figure 7b). We choose the Make shape bigger option and enlarge

the felt earring so that the minimum feature size no longer goes

below the kerf limit (Figure 7a). Once adjusted, we cut and engrave

all sheets in a single job. The finished earring prototypes are shown

in Figure 7c.

5.3 Engraving onto Multi-Material Objects

Compared to individual material sheets, cutting or engraving de-

signs onto multi-material objects (e.g., the smartphone case in Fig-

ure 8a) is a particularly challenging task. It requires a cumbersome

workflow where users first have to split the design into multiple

files, one for each material. More specifically, proper alignment

of the shapes in the digital design with the different parts of the

Figure 7: Adjusting the design for kerf. (a) The user can enlarge the shape to compensate for the thicker kerf for felt. (b) With-

out the adjustment, details like the hole and fine blades of the leaf disappear in the cut felt. (c) The fabricated prototypes.
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Figure 8: Engraving a multi-material phone case, which consists of (a) wood-like rubber and leather. SensiCut scans (b) the

input design’s outline and (c) splits it into two parts based on the material type detection. (d) Engraved design.

physical object is challenging without knowing where the material

borders are located.

SensiCut facilitates cutting and engraving on multi-material

objects by automatically splitting the design precisely along the

border of different materials by sensing the material type at each

point in the design. For this, users start by loading a single file

containing the entire design, insert the multi-material object into

the laser cutter, position the design onto the multi-material object,

and select the Scan multi-material objects mode. SensiCut then

samples points along the laser-cut path to identify the material at

each point. The scanning progress is shown in the SensiCut UI by

highlighting the scanned trajectory. After scanning is completed,

SensiCut splits the design according to the detected material type

at each point to ensure the correct laser settings will be used.

Application: Personalizing Existing Multi-Material Products: In

this example, we want to engrave a custom design at the center of

a smartphone case that consists of two different materials across

its surface, i.e., leather and wooden parts (Figure 8a).

First, we load the design file, position it on top of the phone case,

and select Scan multi-material objects, which then moves the laser

head along the design’s engraving path to detect the material at

each point (Figure 8b). Once the scan is complete, SensiCut splits the

design into two parts, one for each of the two materials (Figure 8c).

Once SensiCut identified the materials, we realize that the part

we had thought was wood is actually made of silicone rubber with

a decorative wood pattern. SensiCut is not deceived by the disguise

pattern because it measures surface structure and sets the correct

laser engraving settings. Once we confirm, our design is engraved

onto our multi-material phone case (Figure 8c).

Application: Customizing Multi-Material Garments: Figure 9a

shows another multi-material item, i.e. a T-shirt, that we want to

engrave with a custom seagull design. The T-shirt has a plastic iron-

on material applied on it. To engrave our design, SensiCut detects

which parts aremade of textile andwhich aremade of plastic. It then

splits the seagull design into multiple paths accordingly and assigns

the correct laser power/speed settings for each one (Figure 9b). If we

had instead used only one set of laser power/speed settings for the

entire seagull design, i.e., the settings for either textile or plastic, the

lines would either not be visible on the yellow plastic or the textile

would have been burned. Further, it would be particularly difficult

to achieve this without SensiCut: One would have to remove the

iron-on plastic from the fabric itself, engrave the plastic and fabric

separately, and put them back together precisely. This shows how

SensiCut could help users further customize garments that have

non-textile parts (e.g., [13]) quickly and on demand.

Figure 9: Engraving a pattern on a T-shirt that has (a) plastic

details on it. (b) SensiCut uses the right combination of laser

settings after partitioning the design (middle). Top/bottom

shows the outcome for singular settings.

6 CLASSIFICATION OF MATERIALS

SensiCut can differentiate between 30 different materials relevant

to the challenges laser cutter users face. In the next section, we

discuss how we built a dataset of speckle patterns of these materials

using an automated script, and how we trained a convolutional

neural network (CNN) to be able to distinguish between them.

6.1 Choosing Material Samples

For our dataset, our goal was to choose materials that are most

representative of the materials commonly found in makerspaces

and workshops, with a particular focus on the ones that cause

confusion because of their appearances. Figure 10a summarizes

the list of materials we compiled by surveying a range of online

communities (e.g., Thingiverse [31], Instructables [4]), educational

materials on laser cutting [5], supply vendors [24, 28], as well as

the laser cutter material databases that come with the default laser

cutter control software (e.g., ULS Universal Control Panel [50]).

The resulting material list includes 30 different materials ranging

from different types of paper, plastic, wood, fabric to (engraved)
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metal. In the next section, we discuss how these selected materials

are representative of the challenges that laser cutter users face.

Different Laser Cutting Materials with Similar Appearance: As our

formative material labeling study showed, plastics are particularly

challenging to distinguish for users due to their visual similar-

ity (Figure 10b). To represent such cases, we purchased samples of

cast acrylic, extruded acrylic, and Delrin (also known as acetal or

POM) of the same color, which require different settings to properly

cut/engrave a design [5]. We also included samples of different

transparent sheets, i.e., acrylic, PETG, and acetate. In addition, we

included other materials that have slightly varying appearances,

but still are difficult to distinguish for non-expert users who are

not familiar with the specific nuances, such as different types of

wood (e.g., maple, oak, bamboo, or birch) [52].

Hazardous Materials that Look Similar to Safe Ones: To represent

cases where some of the commonly found materials in workshops

are hazardous (flammable, toxic, or harmful to the machine) and

cannot be safely laser cut [5, 27], we included polyvinyl chloride

(PVC), Lexan (polycarbonate), acrylonitrile butadiene styrene (ABS),

and carbon fiber sheets. PVC is often mistaken for the common

laser-cut material acrylic. However, it is highly toxic as it releases

hydrochloric acid fumes when heated, which also rapidly corrode

the laser system [20]. Lexan and ABS are also hazardous and easily

flammable2 but look similar to safe plastics. However, whether

a material is considered safe for laser cutting or not depends on

the specific hardware setup (air filter type and volume, power of

laser) as well as local regulations [17]. For our setup, materials in

the ULS material database that comes with our laser cutter and

its UAC 2000 filter (MERV 14, HEPA, 2 Carbon filters) are marked

as safe. For instance, polystyrene is listed as safe for our setup

but may not be safe for others. Thus, we recommend that when

deployed in a newworkshop, SensiCut’s database be updated by the

workshopmanager locally after checkingmaterial safety data sheets

(MSDS) for potential laser generated air contaminants (LGAC).

Workshop managers should also talk to their local occupational

health institution (e.g., NIOSH3 in the US).

To make the material composition of our dataset representative

of a real-world workshop, where certain materials like acrylic and

cardboard are much more available in terms of quantity/color op-

tions, we included more than 1 sheet for these as seen in Figure 10a.

This also allows us to evaluate our system for different colors and

transparencies. In total, we used 59 material samples, the majority

of which were purchased from Ponoko [24], except for the 5 haz-

ardous material sheets (PVC, Lexan, etc.), which we purchased from

other suppliers on Amazon.com. A list of these material samples

and the associated vendors can be found in the appendix.

6.2 Data Capture & Material Speckle Dataset

After purchasing the different materials, we captured images of

each sample to build a dataset for training our convolutional neural

network.

2https://wiki.aalto.fi/display/AF/Laser+Cutter+Materials
3https://www.cdc.gov/niosh/

Preliminary Experiment: Before capturing data for all materials,

we ran a preliminary experiment to determine two values: (1) the

distance between the image sensor and thematerial surface at which

the speckle pattern is most visible, and (2) the number of images

necessary for training the classifier with high accuracy. For the

distance, we empirically found that 11cm between our image sensor

and the material surface led to the best results. For the number of

images, we placed material samples below the image sensor at the

recommended distance and took images, moving the sample in the

xy plane manually to simulate how the laser cutter would take

images at various points of the sheet. We found empirically that

around 80-100 images are sufficient for each material to train a

CNN for classification.

Data Collection: After this manual exploration, we started the data

collection of all materials. For this, we wrote a script to automate

the laser cutter’s movement and image capture. For our material

samples (6.3cm x 6.3cm), we chose to capture a 9x9 grid of points

leading to 81 images, which satisfies our criteria from the prelimi-

nary experiment. For consistency, we kept the image sensor settings,

i.e., exposure time, digital/analog gains, and white balance constant.

Additionally, we captured images at different heights (z-locations)

to ensure that the network can classify materials of different thick-

nesses. This is necessary since the speckle pattern changes with

the distance between the material surface and the image sensor.

We chose 8 different heights ranging from 0mm (to support paper)

to 7mm (thickest material sheet we were able to buy) spaced at

1mm increments. However, not every sheet has a thickness of a

multiple of 1mm (e.g., some sheets are 2.5mm). We can generate

this additional data using data augmentation methods as explained

in Section 6.3. Since our model was trained for materials with a

thickness of 0-7mm and the material surface was 11cm away from

the image sensor, this leads to an effective detection range of 110-

117mm. To integrate material identification into other cutting-based

methods like LaserOrigami [32] or FoldTronics [53], the model can

be trained for larger distances in the future.

Dataset: Our final data set contains 38,232 images from 59 material

samples of 30 uniquematerials (14.93 GB, 800x800 pixels each). Each

material sample includes 648 images (81 images/height x 8 heights),

which took about 40 minutes to capture with our automated setup.

The majority of this time is spent waiting for the laser head to

stabilize after moving to a new location to ensure that the captured

image is not blurry. The dataset is used for training the CNN and

does not need to be stored on the user’s computer. The trained

CNN model that is used at detection time is 120MB. The dataset is

publicly available4.

6.3 Training the Neural Network

To train the CNN and build a detection model using the captured

images, we used transfer learning with a ResNet-50 model [19] that

was pre-trained on the ImageNet dataset [41]. We used the Adam

optimizer with a learning rate of 0.003 and a batch size of 64. We

used 80% of images for the training set and reserved 20% for the

validation set.

4https://hcie.csail.mit.edu/research/sensicut/sensicut.html

https://wiki.aalto.fi/display/AF/Laser+Cutter+Materials
https://www.cdc.gov/niosh/
https://hcie.csail.mit.edu/research/sensicut/sensicut.html
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Figure 10: Material considerations and evaluation. (a) Most common material types for laser cutting. (b) Visually similar ma-

terials. (c) Confusion matrix from our trained classifier for 30 material subtypes.

Image Size Used for Training: For the input image size, we chose

256x256 pixels. Although we captured the images in 800x800 pixels,

we found that the higher resolution caused lower accuracy as the

model overfit to irrelevant details in the image. The lower resolution

input also saves training time because the model has fewer nodes

to compute. Moreover, it speeds up the detection during use (i.e.,

average prediction time: 0.21s for 256x256px vs. 0.51s for 400x400px

on a 2GHz Intel Core i5). We still keep the full-size images in our

dataset to enable future research.

Data Augmentation: To make the model robust to different lighting

conditions and intermediate sheet thicknesses (e.g., 2.5mm), we

generated additional images during training using data augmen-

tation. Every time the network starts training on a new batch of

images, a portion of the images is transformed by changing the

brightness and the contrast of all pixels (by up to ±30%), as well

as zooming into the image to enlarge the speckles as would be the

case when the thickness of the sheet decreases (by up to ±20%).

This allows our model to generalize better and also saves time by

avoiding the capture of more images with the physical setup.

In the future, new materials can be added to SensiCut by capturing

more speckle images and adding them to the dataset. For this, the

neural network needs to be retrained but the weights from this pre-

vious training can be used (transfer learning), which significantly

speeds up the process , i.e., takes only 10-12 minutes vs. 6 hours

training from scratch.

7 EVALUATION OF MATERIAL
CLASSIFICATION

We conducted a technical evaluation to determine our trained clas-

sifier’s accuracy. We also carried out additional tests to understand

how the model generalizes to different physical conditions (rotation

of sheets, illumination variations) and material sheets purchased

from different vendors.

7.1 Detection Accuracy Results

The results of the classification accuracy for the 30 different mate-

rials in our dataset are shown as a confusion matrix in Figure 10c.

Our average identification accuracy is 98.01% (SD=0.20) across the

different materials. This is based on a 5-fold cross-validation, which

we ran to ensure consistency of the classification accuracy across

different training and validation splits. The small standard deviation

shows that training our model leads to similar results independent

of how the dataset is split. For this reason and the fact that cross-

validation is a time-consuming procedure (30 hours for 5-fold), the

remainder of the technical evaluation is based on a single run.

We further analyzed the results to understand which of the

materials outlined in Section 6.1 are confused for each other most.

For instance, given a specific color (either white, black, or red), we

evaluated the identification accuracy across cast acrylic, felt, paper,

and laminated MDF. The accuracy was 100% for white and red,

and 92% (SD=12.72) for black, on average. The latter is likely due

to the fact that black reflects less light. Since the image sensor’s

exposure is the same for all photos, this causes the reduced accuracy
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Figure 11: Effect of (a) varying illumination and (b) sheet orientation on detection.

for black materials. Enabling adaptive exposure when capturing

images could eliminate this difference in the future [54].

Figure 10c also shows materials that were mistaken for each

other. For instance, leather and silicone were confused with each

other at a relatively high rate compared to other pairs. We believe

this is because our full-grain leather piece is hot stuffed, i.e., con-

ditioned with unrefined oils and greases, which likely makes its

surface structure closer to that of silicone. One can also observe

some confusion between walnut and paper-based materials, such

as cardstock. Thesimilarity in their surfaces may be due to the fact

that paper is produced using cellulose fibres derived from wood.

We also evaluated the accuracy of materials within the same

material groups. We got a mean accuracy of 98.92% across woods

(SD=1.66), 98.84% across plastics (SD=2.36), 97.25% across textiles

(SD=2.50), 95.90% (SD=2.94) across paper-basedmaterials, and 97.00%

(SD=2.16) across metals. The fact that paper-based sheets had the

lowest rate is expected as they share the most similarities in their

surface structures among different subtypes (e.g., cardstock vs. card-

board have a similar surface texture).

7.2 Effect of Illumination and Sheet
Orientation on Detection

To understand how detection accuracy is affected under different

illumination (ambient light) conditions and sheet orientations, we

ran additional tests.

Ambient Light: When we captured the images for our main dataset,

we kept illumination in the workshop low (i.e., all lights turned off).

To evaluate if the trained model can distinguish between materials

even when the ambient light varies, we created an additional test

set of images under different lighting conditions. For this, we used

two lamps, one on the left and one on the right corner of the room,

resulting in three conditions (light1 on, light2 on, both lights on)

that cover an illumination range of up to 80 lux, in addition to the

initial data with all lights off. We tested this on different black and

white sheets, representing the two ends of the light reflectance

spectrum, as well as clear (transparent) sheets. We compare the

accuracy in the following three scenarios: 8 white and 8 black sheets

(for each color 2 sheets per type: plastic, paper, textile, wood), and

6 transparent sheets (all plastic).

The results are shown in Figure 11a. We found that the increased

brightness did not have a major impact on the detection of white

and black sheets. For clear sheets, however, the mean accuracy

was lower (66.67%). The reason for this is that while opaque sheets

benefit from data augmentation, this is not the case for clear sheets.

We found that the illumination increase in the room was not realis-

tically simulated in the digitally generated images of clear sheets

because such materials allow light to pass through in all directions.

This can be overcome by capturing additional images of clear ma-

terials under the varying light conditions and then retraining the

model. Indeed, such retraining resulted in an increased accuracy of

88.10% (shown in the last bar). We also found that retraining the

model on this augmented dataset did not have a major impact on

other materials’ detection (only by 0.41% on average).

Orientation of the Sheets: The images we captured for our main

dataset were all taken in a specific sheet orientation. We thus eval-

uated if the classifier is still accurate when the sheets are arbi-

trarily rotated for materials with uniform (e.g., acrylic) or non-

uniform/irregular surface structure (e.g., wood). For this, we created

an additional test set by capturing speckle images while rotating

the material sheets at 45◦ increments. For materials with uniform

surface (plastic, textile, paper, metal), we picked two subtypes each

(cast acrylic, Delrin, cardboard, matboard, felt, leather, aluminium,

carbon steel). For materials with non-uniform surface, we tested

eight subtypes of wood (oak, maple, walnut, birch, MDF, veneer,

bamboo, laminated).

The results are shown in Figure 11b. The lowest average detection

accuracy was for wood sheets (70.31%), which also had a high

standard deviation among thewood subtypes (24.94%). This is due to

the fact that wood sheets included both artificial ones with regular

surface structure (e.g., MDF), which resulted in 100% detection

accuracy, and natural woods with irregular surface structure (e.g.,

oak), which resulted in lower accuracies. The misidentified images

for those materials were all captured at the odd degrees (45◦, 135◦,

etc.). We believe this is due to the cellular 3D microstructure of

natural wood that has a 90◦ rotational symmetry at the microscopic

level [3]. We can increase detection accuracy for natural woods

by augmenting the training dataset with more pictures taken at

different angles, at the expense of longer capture time.

7.3 Generalization to Different Material
Batches and Manufacturers

In our main dataset, each set of samples came from one manu-

facturer. To ensure that our trained model can work robustly for

sheets from different batches of the same manufacturer or different

manufacturers, we conducted the following two tests.

New sheets from the same manufacturer: Two months after we pur-

chased our samples, we ordered a second batch of sheets from

Ponoko (two subtypes per material: oak, maple, cast acrylic, Delrin,

felt, leather, cardboard, cardstock) and placed them inside the laser

cutter to test if our trained model can still identify them. We found

that only the maple sheet was incorrectly classified. As explained in
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Section 7.2, this is likely due to unique microstructural orientation

of natural wooden sheets.

New sheets from different manufacturers: To test if sheets from differ-

ent manufacturers can be reliably identified, we ordered 8 different

sheets from various vendors on Amazon.com (two subtypes per

material: birch, cork, cast acrylic, Lexan, leather, felt, cardboard,

matboard). Only one of them, leather, was incorrectly classified. We

later found out that the new sample was synthetic leather, whereas

the classifier was trained on natural leather.

While the above evaluation demonstrated that our classification

model can detect material types across various conditions, more

longitudinal tests are needed to further verify its applicability across

various workshop settings.

8 SOFTWARE IMPLEMENTATION

Our user interface is Web-based and implemented using JavaScript

and the Paper.js library. When users request a material identifica-

tion, our system automatically moves the laser cutter head to the

corresponding xy-coordinates on the physical cutting bed. These

coordinates are offset by the distance between SensiCut’s laser

pointer and the cutting laser. For the z-value, a fixed distance to the

sheet is used for capturing the speckles (Section 6.2). To input the

coordinates and initiate the movement, our system uses the PyAu-

toGUI library to interface with the ULS Universal Control Panel

(UCP). It then detects if the laser head stopped moving, i.e., is stable

enough to take a picture, by checking if the laser is in idle mode.

This is indicated via a color change in UCP, which our system can

detect via PyAutoGUI ’s screenshot() and getcolors() functions.

Next, the captured image is wirelessly sent from the hardware

add-on’s Raspberry Pi board to the main server, which runs on an

external computer. This Python server uses the image as input to

the trained CNN model, which was implemented using PyTorch

and fast.ai [21]. The CNN returns the classification results, which

are then displayed in the UI. The communication between the

JavaScript front-end and the Python back-end is handled by the

Socket.IO framework. The complete pipeline is shown in Figure 12.

Figure 12: Our detection pipeline takes the user’s drawing

as input and turns it into target points to capture speckle

patterns. The captured images at those points are passed to

the CNN to retrieve the material label.

After the user confirms the results, the laser power, speed, and

PPI (pulses per inch) settings are retrieved from the ULS database

based on the detected material. Because the UCP interface does not

have an API, we extracted these values from the its back-end using

a Firebird server and Database Workbench 5 Pro to create an interim

datasheet from which we can look up values as needed.

To detect kerf-related issues, we first dilate the drawing with

a kernel of the size of the material-specific kerf. We check if two

curves overlap or if the dilation results in extra blobs, i.e., the cut

may lead to an undesired shape. The materials’ kerf values are

based on the "Minimum feature size" values listed on Ponoko.

For the multi-material object mode, our system samples points

uniformly along the cutting path and processes the captured images

according to the pipeline described previously. Our system then

assigns the respective identified material to each part of the users’

drawings.

9 DISCUSSION

In the next section, we discuss insights gained from our work,

acknowledge the limitations of our approach, and propose future

research.

Avoiding Dust on the Sensor: In conventional cameras, lenses help

prevent dust particles from landing on the sensor. Although we use

a lensless image sensor to capture the speckle patterns, over the

course of our research we did not observe the lack of the lens to

interfere with classification results. We hypothesize that this is the

case because (1) the sensor is facing down, which prevents dust

particles from reaching the surface of the sensor due to gravity, and

(2) the ventilation in the laser cutter bed sucks away particles from

the image sensor.

Confidence Scores for Misidentified and/or Unknown Materials: The

neural network’s final layer outputs a vector for the confidence

score of each material type. If multiple types have similar scores,

the material is either misclassified or not included in the original

training dataset. As part of our future work, we will extend the user

interface to show bars to visualize the confidence scores and inform

the user to act with caution when confidence scores of multiple

materials are similar. Additionally, a confidence threshold for when

a material is safely classified could be set by the workshop manager

for all users of the workshop.

Effect of Scratches on Sheets: Scratches on sheets are often local, i.e.,

they occur when a sheet’s sharp corner abrades a spot on another

sheet’s surface. We picked 2 cast acrylic, 2 birch, 2 cardboard sheets

with the most scratches from the material pile in our workshop and

captured speckle patterns at 30 uniformly distributed points across

the surface of each material sample. We found that the majority of

points were correctly classified, i.e. 90% for acrylic, 91.7% for birch,

86.7% for cardboard. In future work, to make material detection

robust to local scratches, SensiCut could take more than one image

and cross-check the classification result at the expense of longer

detection times.

Materials with Protective Cover: Some material sheets come with a

protective plastic/paper cover to avoid scratches during transporta-

tion and some users may prefer to leave it on during laser cutting.

Since SensiCut needs access to the material’s surface, users can peel

a small section from the corner and use our interface’s Pinpoint

function to detect the material type from that corner.



SensiCut: Material-Aware Laser Cu�ing Using Speckle Sensing UIST ’21, October 10–14, 2021, Virtual Event, USA

Estimating the Sheet Thickness from Speckles: As the distance be-

tween the image sensor and the material surface increases, the

speckles appear larger in the image [47]. If the pictures are taken

at a fixed height (i.e., a fixed distance of the laser head to the cut-

ting bed), then the surface of thicker sheets is closer to the laser

head, which results in smaller speckles, while thinner sheets are

further away from the laser head, resulting in larger speckles. We

tested if this can be used to detect the sheet thickness by using

the same dataset and CNN structure as the material type classi-

fier (ResNet). However, as this is a regression problem, we used

mean squared error instead of cross-entropy as our loss function.

An initial test across 14 material sheets gave us a mean error of

0.55mm (SD=0.68mm). For the ULS laser lens we have, the depth of

focus (i.e., tolerance to deviations from the laser’s focus) is 2.54 mm,

which is larger than this detection rate. Thus, for future versions of

SensiCut, we can also include thickness detection.

Labeling Workflows: While some users may prefer to keep material

sheets unlabelled and launch SensiCut every time they use the laser

cutter, SensiCut can also support hybrid workflows, such as printing

a sticker tag after identifying a sheet, which can then subsequently

be attached to the material sheet. Similarly, the software interface

could remind users to label the material sheet with a pen after use

as a courtesy to the next maker.

Material Identification for Other Fabrication Tools: For future work,

we plan to explore how SensiCut’s material identification method

can be used for other personal fabrication machines as well. For

example, in 3D printing, some manufacturers, such as Ultimaker,

add NFC chips into filament spools to allow the chip reader inte-

grated in the 3D printer to automatically detect them. However,

not all spools come with such chips. To address this issue, we plan

to investigate how speckle sensing can be integrated into filament

feeder systems to detect the filament type when a new spool is

loaded onto the 3D printer.

10 CONCLUSION

In this paper, we presented SensiCut, a material sensing platform

that helps laser cutter users to identify visually similar materials

commonly found in workshops. We demonstrated how this can be

achieved with speckle sensing by adding a compact and low-cost

hardware add-on to existing laser cutters. We showed how the ma-

terial type detection can be used to create a user interface that can

warn users of hazardous materials, show material-relevant informa-

tion, and suggest kerf adjustments. Our applications demonstrated

how SensiCut can help users identify unlabeled sheets, test vari-

ous materials at once, and engrave onto multi-material objects. We

discussed how we chose the materials in our dataset and how we

trained the convolutional neural network for their classification.

We reported on the detection accuracy for different material types

and evaluated the impact of varying the room illumination, rotating

the sheets, and using sheets purchased from different manufactur-

ers. We then highlighted how our system can be extended to also

detect the thickness of sheets. For future work, we plan to investi-

gate how speckle sensing can be used to detect materials in other

fabrication tools. Furthermore, we plan to collaborate with laser

cutter manufacturers to integrate our material sensing approach

into future commercial products, which only requires adding the

lensless image sensor and adjusting the power of the existing visible

laser pointer.
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A APPENDIX

Hardware Components: The components used for the speckle sens-

ing add-on and their specifications are provided in Table 1.

Material Samples: The material samples used for the evaluation and

their properties are provided in Table 2.
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Table 1: Components used in the SensiCut hardware add-on.

Component Model Specifications Link

Laser Pointer Hawkgazer HG-LG-9 515nm, <5mW http://hawkgazer.com/productright.aspx?id=49
Image Sensor Raspberry Pi v2 8MP module Sony IMX219PQH5-C sensor https://www.raspberrypi.org/products/camera-module-v2/
Microprocessor Raspberry Pi Zero W 1GHz GPU, 512MB RAM https://www.raspberrypi.org/products/raspberry-pi-zero-w/
Battery 5000mah Portable Battery Charger Dual 2Amp ports https://www.amazon.com/gp/product/B07QXZ6DJL/

Table 2: Materials used for the evaluation.

Material Type Product Name Thickness Link

Oak Red Oak Hardwood 3.2mm https://www.ponoko.com/materials/red-oak-hardwood
Maple Maple Hardwood 3.2 mm https://www.ponoko.com/materials/maple-hardwood
Walnut Walnut Hardwood 3.2 mm https://www.ponoko.com/materials/walnut-hardwood
Birch Plywood Birch Plywood 3.2 mm https://www.ponoko.com/materials/birch-plywood
Cork Brown Cork 3.0 mm https://www.ponoko.com/materials/brown-cork
MDF MDF Fiberboard 3.0 mm https://www.ponoko.com/materials/mdf-fiberboard
Veneer MDF Bamboo Veneer MDF 3.5 mm https://www.ponoko.com/materials/bamboo-premium-veneer-mdf

Bamboo
Amber Bamboo Plywood 2.7 mm https://www.ponoko.com/materials/amber-bamboo-plywood
Blonde Bamboo Plywood 6.6 mm https://www.ponoko.com/materials/blonde-bamboo-plywood

Laminated MDF
White Melamine MDF 6.4mm https://www.ponoko.com/materials/white-melamine-mdf
Black Melamine MDF 6.4 mm https://www.ponoko.com/materials/black-melamine-mdf
Black Coated MDF 3.0 mm https://www.ponoko.com/materials/black-coated-mdf

Cast Acrylic

Clear Acrylic 3.0 mm https://www.ponoko.com/materials/clear-acrylic
Clear Matte Acrylic 3.0 mm https://www.ponoko.com/materials/clear-matte-acrylic
White Acrylic 3.0 mm https://www.ponoko.com/materials/white-acrylic
White Matte Acrylic 3.0 mm https://www.ponoko.com/materials/white-matte-acrylic
Black Acrylic 3.0 mm https://www.ponoko.com/materials/black-acrylic
Black Matte Acrylic 3.0 mm https://www.ponoko.com/materials/black-matte-acrylic
Green Acrylic 3.0 mm https://www.ponoko.com/materials/green-acrylic
Green Translucent Acrylic 3.0 mm https://www.ponoko.com/materials/green-translucent-acrylic
Orange Acrylic 3.0 mm https://www.ponoko.com/materials/orange-acrylic
Red Acrylic 3.0 mm https://www.ponoko.com/materials/red-acrylic
Cream Acrylic 3.0 mm https://www.ponoko.com/materials/cream-acrylic

Extruded Acrylic
Black Extruded Acrylic 4.5 mm https://www.amazon.com/Glossy-Acrylic-Plexiglass-Extruded-AZM/dp/B07RG43Q4L/
Clear Extruded Acrylic 6.4 mm https://www.amazon.com/12-24-Extruded-Acrylic-Plexiglass/dp/B0178GAY9K

Delrin
White Delrin 3.2 mm https://www.ponoko.com/materials/white-delrin
Black Delrin 3.0 mm https://www.ponoko.com/materials/black-delrin

PETG PETG Sheet 1.0 mm https://www.amazon.com/gp/product/B0841W16NL/
Acetate Clear Acetate 0.2 mm https://www.amazon.com/gp/product/B0027AAOIY/
Silicone Black Silicone 1.5 mm https://www.ponoko.com/materials/black-silicone
Styrene White Styrene 0.5 mm https://www.ponoko.com/materials/white-styrene
Foamboard Foamboard 3.2 mm https://www.amazon.com/gp/product/B07MB31G6S
PVC Clear Vinyl 1.5 mm https://www.amazon.com/gp/product/B0816LCQWD/

Lexan
Clear Lexan Sheet 3.0 mm https://www.amazon.com/gp/product/B004U7B9HM/
White PC Sheet 3.0 mm https://www.amazon.com/gp/product/B0070Z4ZL8/

Carbon Fiber Carbon Fiber Plate Sheet 2.0 mm https://www.amazon.com/gp/product/B07YDQ3F1W
ABS ABS Plastic 3.2 mm https://www.amazon.com/gp/product/B0007WTF02/

Felt

Black Wool Felt 3.0 mm https://www.ponoko.com/materials/black-wool-felt
White Wool Felt 3.0 mm https://www.ponoko.com/materials/white-wool-felt
Orange Wool Felt 3.0 mm https://www.ponoko.com/materials/orange-wool-felt
Fire Wool Felt 3.0 mm https://www.ponoko.com/materials/fire-wool-felt
Red Synthetic Felt 2.0 mm https://www.ponoko.com/materials/red-synthetic-felt

Leather Black Leather 2.5 mm https://www.ponoko.com/materials/black-leather

Suede
Black Ultrasuede 0.7 mm https://www.ponoko.com/materials/black-ultrasuede
Red Ultrasuede 0.7 mm https://www.ponoko.com/materials/red-ultrasuede

Cardstock

Black Cardstock 0.3 mm https://www.ponoko.com/materials/black-cardstock
Ivory Cardstock 0.3 mm https://www.ponoko.com/materials/ivory-cardstock
Grey Cardstock 0.3 mm https://www.ponoko.com/materials/grey-cardstock
Green Cardstock 0.3 mm https://www.ponoko.com/materials/green-cardstock
Red Cardstock 0.3 mm https://www.amazon.com/RED-HOT-Cardstock-Paper-Warehouse/dp/B075FC2R6M

Cardboard

Brown Cardboard 1.3 mm https://www.ponoko.com/materials/brown-cardboard
White Coasterboard 1.5 mm https://www.ponoko.com/materials/white-coasterboard
White Corrug. Cardboard 4.0 mm https://www.ponoko.com/materials/white-one-side-corrugated-cardboard
Brown Corrug. Cardboard 4.0 mm https://www.ponoko.com/materials/brown-corrugated-cardboard

Matboard
Black Matboard 2.7 mm https://www.ponoko.com/materials/black-matboard
Green Matboard 1.3 mm https://www.ponoko.com/materials/green-matboard

Aluminum Standard Aluminum 3.0 mm https://www.ponoko.com/materials/standard-aluminum
Stainless Steel Stainless Steel 1.5 mm https://www.ponoko.com/materials/stainless-steel
Carbon Steel Carbon Steel 1.3 mm https://www.ponoko.com/materials/carbon-steel

https://www.ponoko.com/materials/red-oak-hardwood
https://www.ponoko.com/materials/maple-hardwood
https://www.ponoko.com/materials/walnut-hardwood
https://www.ponoko.com/materials/birch-plywood
https://www.ponoko.com/materials/brown-cork
https://www.ponoko.com/materials/mdf-fiberboard
https://www.ponoko.com/materials/bamboo-premium-veneer-mdf
https://www.ponoko.com/materials/amber-bamboo-plywood
https://www.ponoko.com/materials/blonde-bamboo-plywood
https://www.ponoko.com/materials/white-melamine-mdf
https://www.ponoko.com/materials/black-melamine-mdf
https://www.ponoko.com/materials/black-coated-mdf
https://www.ponoko.com/materials/clear-acrylic
https://www.ponoko.com/materials/clear-matte-acrylic
https://www.ponoko.com/materials/white-acrylic
https://www.ponoko.com/materials/white-matte-acrylic
https://www.ponoko.com/materials/black-acrylic
https://www.ponoko.com/materials/black-matte-acrylic
https://www.ponoko.com/materials/green-acrylic
https://www.ponoko.com/materials/green-translucent-acrylic
https://www.ponoko.com/materials/orange-acrylic
https://www.ponoko.com/materials/red-acrylic
https://www.ponoko.com/materials/cream-acrylic
https://www.amazon.com/Glossy-Acrylic-Plexiglass-Extruded-AZM/dp/B07RG43Q4L/
https://www.amazon.com/12-24-Extruded-Acrylic-Plexiglass/dp/B0178GAY9K
https://www.ponoko.com/materials/white-delrin
https://www.ponoko.com/materials/black-delrin
https://www.amazon.com/gp/product/B0841W16NL/
https://www.amazon.com/gp/product/B0027AAOIY/
https://www.ponoko.com/materials/black-silicone
https://www.ponoko.com/materials/white-styrene
https://www.amazon.com/gp/product/B07MB31G6S
https://www.amazon.com/gp/product/B0816LCQWD/
https://www.amazon.com/gp/product/B004U7B9HM/
https://www.amazon.com/gp/product/B0070Z4ZL8/
https://www.amazon.com/gp/product/B07YDQ3F1W
https://www.amazon.com/gp/product/B0007WTF02/
https://www.ponoko.com/materials/black-wool-felt
https://www.ponoko.com/materials/white-wool-felt
https://www.ponoko.com/materials/orange-wool-felt
https://www.ponoko.com/materials/fire-wool-felt
https://www.ponoko.com/materials/red-synthetic-felt
https://www.ponoko.com/materials/black-leather
https://www.ponoko.com/materials/black-ultrasuede
https://www.ponoko.com/materials/red-ultrasuede
https://www.ponoko.com/materials/black-cardstock
https://www.ponoko.com/materials/ivory-cardstock
https://www.ponoko.com/materials/grey-cardstock
https://www.ponoko.com/materials/green-cardstock
https://www.amazon.com/RED-HOT-Cardstock-Paper-Warehouse/dp/B075FC2R6M
https://www.ponoko.com/materials/brown-cardboard
https://www.ponoko.com/materials/white-coasterboard
https://www.ponoko.com/materials/white-one-side-corrugated-cardboard
https://www.ponoko.com/materials/brown-corrugated-cardboard
https://www.ponoko.com/materials/black-matboard
https://www.ponoko.com/materials/green-matboard
https://www.ponoko.com/materials/standard-aluminum
https://www.ponoko.com/materials/stainless-steel
https://www.ponoko.com/materials/carbon-steel
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